F/G 1271

CHAPEL HILL DEPT OF COMPUTER SCIENCE
AUG 87 TRE7-008 NOBS14-86-K-0680

TINE: AN HISTORICAL ALGEBRACU) NORTH

Iy

k) "5

_A

S

Wt

-
\.x-.\""

I

J’

‘p

4’

'

N
o

o

‘“

FEEFEEER

EEER

e

£

£
g i.’"
o N

ho

O
==
ll=

)6
==

it

MIrenCOpy geeny TN TEST CHART
WOI9hd A

s

s <t

: P~ Supporting Valid Time: An Historical Algebra

h B August 1987

ol Technical Report TR87-008

)

S Y0001V~ 8E- K-0680

\]

E)

'

: Edwin McKenzie and Richard Snodgrass

X The University of North Carolina at Chapel Hill

Department of Computer Science i

¥ Sitterson Hall 038A i Ji

i. Chapel Hill. N.C. 27514 c =

R DTIC
ELECTE

§ NOV 3 0 1987

J D! UTION STA X

d

. Approved for public release;

Distribution Unlimited » (‘]aH 1

gy 11 10 083;

.......... ST D AR R TN “ \ LA ST S L L SR)
,-‘_,,\._,\._,.\-,.\.‘-,. -,,-.."',,za..zrf.fra.ff "'.r"w“.r.r")ar.r AT > y *‘\ "

ey
»
P
"
I
2
‘s
n
]
.;. Abstract
LW
R <“l v'/r/’ 2 R . &, o
(_
: ' We define an historical algebra for historical relations. This historical algebra, a
- straightforward extension of the conventional relational algebra, supports valid time, the
o
time when an object or relationship in the enterprise being modeled is valid. Historical
. versions of the five relational operators union, difference, cartesian product, selection,
: and projection are defined and a new operator, historical derivation, is introduced. The
w
- algebra includes aggregates and is shown to have the expressive power of the temporal
o
‘ query language TQuel. The algebra is consistent with the user-oriented model of historical
l‘
s relations as space-filling objects and satisfies all but one of the associative, commutative,
v
~ and distributive tautologies involving union, difference, and cartesian product. \
o ~ A
& i
e
A9
N
»
\
- Acoession For
7 NTIS GRAAI 4
o DTIC TAB O
'-E Unannounced .
i~ Justification . ¢
“
-
> YN, 2
Distribution/
[Avallability Codes |
- [Avail ana/or
W) i Dtat c 1
5 W\ IL

A gt A A ORY 1 A LN ARG A L R OL ¥ ARy

LY ;‘ \‘n LR e] ’.-F\'.‘-).;\ - ‘\ . > ;- .
a ¥

Wk

Contents

1 Approach

2 An Historical Algebra for Historical Relations

>

A=

LY

2 9 8 3 3 MR

Pt b M)

.» -
LRI

AN AR

-
- L]
Nl b

oL

-
-

1
LI PPN bl bl & kgt

¢ 22 a%

2.1 Historical Relation e
2.2 Historical Operators
221 Union e e e e e e e e e e
222 Difference e e e e e e e e
2.2.3 Cartestan Product L
224 Selection L e e
225 Projection e e e
2.2.6 Historical Derivation e e
2.3 AGEregates i e e e e e e e e e e e e e e e e
2.3.1 Partitioning Function o
2.3.2 Non-unique Aggregates
2.3.3 Unique Aggregates e
2.3.4 Expressions in Aggregates u v e e
2.4 Preservation of the Value-equivalence Property
2.5 SUMIMAY v v o v v e e e e e e e e e e e e e e

Equivalence with TQuel

3.1 TQuel Retrieve Statement
3.2 Correspondence with the Historical Algebra
33 TQuel Aggregates e

3.3.1 TQuel Aggregates in the Target List

R g AN LN
) »

e g Vgt 4ol g pia b sy g g0 JUL 010 8i0 a%a Jiadte dte gla g1y gie §'a §%a 6% Ata gia 81a tix 47 §'a g7a 4l
3.3.2 TQuel Aggregates in the Inner Where Clause
3.3.3 TQuel Aggregates in the Inner When Clause
3.3.4 TQuel Aggregates in the Outer Where Clause
3.3.5 TQuel Aggregates in the Quter When Clause
3.3.6 Multiply-nested Aggregation

3.4 Correspondence Theorems i i e e

Review of Design Decisions

4.1 Time-stamped Attributes

4.2 Set-valued Time-stamps

4.3 Single-valued Attributes o oL L o

Summary and Future Work

Acknowledgements

Bibliography

A Notational Conventions

B Auxiliary Functions

i

o

A s e -
A A R L S A A

39

40

40

42

42

43

43

46

48

-

Lo \-'\d'\-‘
R oWy

[}

r R}

‘&-.’.'--

N T U U U AT OV UV LR AT U T X K TR WU QN R TR OLIN oy * - Tao g v At S e

oy xR

P A S 3

Time is a universal attribute of both events and objects in the real world. Events occur at
specific points in time; objects and the relationships among objects exist over time. The ability to
model this temporal dimension of the real world is essential to many computer system applications

(e.g., econometrics, banking, inventory control, medical records, and airline reservations). Unfortu-
" nately, conventional database management systems do not support the time-varying aspects of the
real world. Conventional databases can be viewed as snapshot databases in that they represent the
Ay state of the real world at one particular point in time. As a database is changed to reflect changes
in the real world, out-of-date information, representing past states of the real world, is deleted. The
need for database support for time-varying information has received increasing attention; in the
last five years, more that 80 articles relating time to information processing have been published
[McKenzie 1986).

PO
oV

MR T

In previous papers, we identified three orthogonal kinds of time that a database management
system (DBMS) needs to support: valid time, transaction time, and user-defined time [Snodgrass
& Ahn 1985, Snodgrass & Ahn 1986|. Valid time concerns modeling time-varying reality. The valid
time of, say, an event is the clock time at which the event occurred in the real world, independent
of the recording of that event in some database. Transaction time, on the other hand, concerns
the storage of information in the database. The transaction time of an event is the transaction
number (an integer) of the transaction that stored the information about the event in the database.
User-defined time is an uninterpreted domain for which the DBMS supports the operations of
input, output, and perhaps comparison. As its name implies, the semantics of user-defined time
is provided by the user or application program. These three types of time are orthogonal in the
support required of the DBMS.

>y a4ty ‘1;"_.'_

v
'l‘l

— o
Fs

) NN

In this paper we propose extending the relational algebra [Codd 1970] to enable it to handle
valid time. The relational algebra already supports user-defined time in that user-defined time is
simply another domain, such as integer or character string, provided by the DBMS [Bontempo 1983,
Overmyer & Stonebraker 1982, Tandem 1983]. The relational algebra, however, supports neither
valid time nor transaction time. Hence, for clarity, we refer to the relational algebra hereafter
as the snapshot algebra and our proposed algebra, which supports valid time, as an historical
algebra. We do not consider here any extension of the snapshot algebra or our historical algebra
to support transaction time. Elsewhere [McKenzie & Snodgrass 1987A| we describe an approach
for adding transaction time to the snapshot algebra and show that this approach applies without
change to all historical algebras supporting valid time. This approach for adding transaction time
to the snapshot algebra and historical algebras also provides for scheme evolution [McKenzie &
, Snodgrass 1987B|. Because valid time and transaction time are orthogonal, we are able to study
' each type of time in isolation.

e

Y
PRl

AR

v,

4 1 Approach

: .

M To extend the snapshot algebra to support valid time, we define formally an historical algebra.
’ j We provide formal definitions for an historical relation, six algebraic operators, and two histori-
- cal aggregate functions. We then show that the algebra has the expressive power of the TQuel

(Temporal QUEry Language) [Snodgrass 1987] facilities that support valid time.

"’

]

v 1

q

-
v e

-

AT, A, R TN AT

W o il £ L

« :) i & Ae L Al ‘R e Sl el Fol s ot ind tad ba) Lid St Sof

b The algebra reflects our basic design goal to define an historical algebra that has as many of the

most desirable properties of an historical algebra as possible. For example, we wanted the historical !
algebra to be a straightforward extension of the snapshot algebra so that relations and algebraic
expressions in the snapshot algebra would have equivalent counterparts in the historical algebra.
Yet, we also wanted the algebra to support historical queries and adhere to the user-oriented model
of historical relations as space-filling objects, where the additional, third dimension is valid time.
Hence, we did not restrict historical relations to first-normal form, insist on time-stamping of entire
tuples, or require that time-stamps be atomic-valued because each of these restrictions would have
prevented the algebra from having other, more highly desirable properties. All design decisions
(e.g., to time-stamp attributes rather than tuples) were made so that the resuiting algebra would
possess a maximal set of desirable properties. In Section 4 we briefly discuss our major design
4 decisions and the importance of those decisions in determining the algebra’s properties. A detailed
discussion of desirable properties of historical algebras as well as an evaluation of our algebra and
the historical algebras proposed by others, using the identified properties as evaluation criteria,
can be found elsewhere [McKenzie & Snodgrass 1987C].

-

TN

Efficient direct implementation of the algebra was not one of our primary design objectives.
Rather, cur goal was to define an algebra that preserves the associative, commutative, and dis-
tributive properties of the snapshot algebra in order that optimization strategies developed for the
snapshot algebra can be applied in implementations of the historical algebra. Our formulation of
the algebraic operators would be inefficient if mapped directly into an implementation. While we
can envision more efficient implementations, incorporating such efficiencies in the semantics would y
have made it much more complex. Finally, we expect that new optimization strategies, unique to
the historical algebra, also will be used in its implementation.

In the nexi section we define our historical algebra. Then we show that the algebra has the
expressive power of the TQuel calculus. We conclude the paper with a discussion of the major
design decisions we made in defining the algebra. The notational conventions used in the paper
are described in Appendix A.

e >

2 An Historical Algebra for Historical Relations

The algebra presented in this section is an extension of the snapshot algebra. As such, it retains the
basic restrictions on attribute values found in the snapshot algebra. Neither set-valued attributes
nor tuples with duplicate attribute values are allowed. Valid time is represented by a set-valued
time-stamp that is associated with individual attributes. A time-stamp represents possibly disjoint
intervals and the time-stamps assigned to two attributes in a given tuple need not be identical.

; 2.1 Historical Relation

Assume that we are given a relation scheme defined as a finite set of attribute names N = {Ny, ..., .
Nm}. Corresponding to each attribute name N,, 1 < a < m, is a domain J,, an arbitrary, non-
empty, finite or denumerable set [Maier 83]. Let the positive integers be the domain T, where each

S 5 e .

A T T T N T I T P A I LU

RO I
I)

RO T N P D U
e e e e - et N e e e e v

) ‘-..------ -
A N A TN R

v element of T represents a time quantum [Anderson 82|. Assume that, if ¢, immediately precedes
‘:i t2 in the linear ordering of T, then t; represents the interval [t;, t2). The granularity of time (e.g.,
nanosecond, month, year) associated with T is arbitrary. Note that because time is a continuous
function, all measures of time can be viewed as measures of intervals. Hence, when we speak of a

\.‘ “point in time,” we actually refer to an interval whose duration is determined by the granularity of
:: the measure of time being used to specify that “point in time.” Also, let the domain &(T) be the
;5 - power set of T. An element of #(T) is then a set of integers, each of which represents an interval
:3_ of unit duration. Also, any group of consecutive integers t;, ..., t, appearing in an element of
#(T), together represent the interval [t;, ¢, + 1).

™

.
K If we let value range over the domain Dy U- U Dy, and valid range over the domain $(T), we
\ can define an historical tuple p as a mapping from the set of attribute names to the set of ordered
N, pairs (value, valid),
) p:N—> (DL1u---UDm, P(T))
'.' with the following restrictions:
o

N
W e Va, 1 < a < m, value(p(N,)) € D, and

e Jda, 1 < a < m, valid(p(N,)) # 0.

Eai
g

L d
_’ Hereafter, we will refer to p(N,) simply as p,, where a denotes attribute N, in scheme X, when
" there is no ambiguity of meaning. Note that it is possible for all but one attribute to have an

{ empty time-stamp.
'ji:« Let P be the domain of all tuples over the attribute names of the relation scheme N and the
.- domains Dy, ..., D, and (7). Define two tuples, p, p' € P, to be value-equivalent if and only
ey if Va, 1 < a < m, value(p,) = value(p)). An historical relation h is then defined as a finite set
> of historical tuples, with the restriction that no two tuples in the relation are value-equivalent. ¥

represents the domain of all historical relations on the relation scheme.

b EXAMPLE. Assume that we are given the relation scheme Student = {Name, Course} and the
s following set of tuples over this relation scheme. For this and all later examples, assume that the
N granularity of time is a semester relative to the Fall semester 1980. Hence, 1 represents the Fall

ot semester 1980, 2 represents the Spring semester 1981, etc.
(v,
- s={ ((Phil, {1,3}), (English, {1,3})),
) ((Norman, {1,2}), (English, {1,2})),
: ((Norman, {5,8}), (Calculus, {5,6})),
N
- ((Phil, {4}), (English, {4})) }
.‘\
~
N For notational convenience we enclose each attribute value in parentheses and each tuple in angular
B brackets (i.e., ()). We assume the natural mapping between attribute names and attribute values
7 (e.g., Name — (Phil, {1,3}), and Course — (English, {1,3})). Note that S is not an historical
v
Cal
>
: 3
)
P
A
N

-, A 4T A A A A e e e e et A
*',-.;.(-"' P AN NN NI NS EMN NI NI N NRIN N

RO AT AN T A T T L L

relation because there are value-equivalent tuples in the set (the first and fourth tuples are value-
equivalent). If we replace the two value-equivalent tuples in S with a single tuple, then the new set
S, is an historical relation.

L g ga e &t S

l' S1= { ((Phil, {1,3,4}), (English, {1,3,4})),
E ((Norman, {1,2}), (English, {1,2})) ,
1 ((Norman, {5,6}), (Calculus, {5,6})) } o

2.2 Historical Operators

We present eight operators that serve to define the historical algebra. Five of these operators
— union, difference, cartesian product, projection, and selection —— are analogous to the five
operators that serve to define the snapshot algebra for snapshot relations [Ullman 82|. Each of
these five operators on historical relations is represented as dp to distinguish it from its snapshot

! algebra counterpart op. Historical derivation is a new operator that replaces the time-stamp of

| each attribute in a tuple with a new time-stamp, where the new time-stamps are computed from
the existing time-stamps of the tuple’s attributes. The remaining two operators, aggregation and
unique aggregation, compute aggregates. After defining the operators, we show that all eight
preserve the value-equivalence property of historical relations.

EXAMPLE. The three relations Sy, So, and Ss are used in the examples that accompany the
definitions of the operators. S, like Sy, is an historical relation over the relation scheme Student =
{Name, Course}. Sg is an historical relation over the relation scheme Home = {Name, State}.
While the attributes of a tuple in S;, Sz, and Sg have the same time-stamp, in general, attributes
within a tuple can have different time-stamps.

S; = { ((Phil, {3,4}), (English, {3,4})), .
((Norman, {7}), (Calculus, {7})), :
{(Tom, {5,6}), (English, {5,6})) } "

Sa = { ((Phil, {1,2,3)), (Kansas, {1,2,3})),

! ((Phil, {4,5,8}), (Virginia, {4,5,6})), .
((Norman, {1,2,5,6}), (Virginia, {1,2,5,6})) , :

| ((Norman, {7,8}), (Texas, {7,8})) } D
4 b

b o N N N NN N ey e

TS R UV UM WU UL P PP X ‘S.A' 9af gl Sall 128 vab bovad "ol 0ot 2l otaia \a'dda AY ‘ad'a b P " o q a) Bab By,

2.2.1 TUnion

&
‘ Let Q and R be historical relations of m-tuples over the same relation scheme. Then the historical
S union of Q and R, denoted QU R, is defined as
r QURE {¢g™ | Q(g) A ~(3r, r€ R A Va, 1 < a < m, value(q,) = value(r,))}
4
¥ U{r™ | R(r) A =(3q, ¢ € Q A Va, 1 < a < m, value(r,) = value(q,))}
: U{u™|3¢g3r,qe Q Are R A Va, 1 <a<m,value(uy) = value(gy) = value(r,)
. A valid(u,) = valid(qs) U valid(ry)}
" QU R is the set of tuples that are in Q, R, or both, with the restriction that each pair of value-
equivalent tuples is represented by a single tuple. Note that if a tupie in Q and a tuple in R are
9 value-equivalent, then they are represented in Q U R by a single tuple. The time-stamp associated
: with each attribute of this tuple in QU R is the set union of the time-stamps of the corresponding
attribute in the value-equivalent tuples in @ and R.
y EXAMPLE. $1082 = { {((Phil, {1,3,4}), (English, {1,3,4})),
. \ ((Norman, {1,2}), (English, {1,2})),
. ((Norman, {5,86,7}), (Calculus, {5,6,7})),
' ((Tom, {5,6}), (English, {5,6})} } a
2
¥
:: 2.2.2 Difference
N
Let @ and R be historical relations of m-tuples over the same relation scheme. Then the historical
:_' difference of @ and R, denoted Q — R, is defined as
.&
; Q R4 {g™] Q(g) A =(3r, r€ R A Va, 1 < a < m, value(q,) = value(r,))}
>
ot U{u™|(3¢3r,ge Q Are R AVa, 1< a< m,value(u,) = value(qs) = value(r,)
; A valid(u,) = valid(gq,) — valid(r,))
XS
N A (Ja, 1 <a<mA valid(u,) # 0)
: }
0
. Q = R is the set of all tuples that satisfy three criteria. First, a tuple in @ = R must have a value-
” equivalent counterpart in Q. Second, the time-stamp of each attribute of a tuple in Q — R must
[equal the set difference of the time-stamps of the corresponding attribute in the value-equivalent
',' tuple in @ and the value-equivalent tuple in R, if any. Third, the time-stamp of at least one
Ky attribute of each tuple in Q = R must be non-empty.
4
-J
o

waas

P

EXAMPLE. $1=Sz ={ ((Phil, {1}), (English, {1})),
((Norman, {1,2}), (English, {1,2})),
((Norman, {5,6}), (Calculus, {5,6})) } (|

2.2.3 Cartesian Product

Let Q be an historical relation of mj-tuples and R be an historical relation of ma-tuples. Then
Q X R, the historical cartesian product of Q and R, is defined as

QxR2
{u™*™2| (3¢, g€ Q A Va, 1 <a < my, value(u,) = value(gy) A valid(ug) = valid(g,))
A(3r,r€ RAVa, 1< a< my, value(um,4a) = value(r,) A valid(um,+q) = valid(r,))

}

The cartesian product operator for historical relations is identical to the cartesian product operator

for snapshot relations. @ X R is the set of (my + m;)-tuples whose components uj, ..., um, form

a tuple in @ and whose components um,+1, ..., Um,+m, form a tuple in R.

EXAMPLE.

S1%Ss = { {(Phil, {1,3,4}), (English, {1,3,4}), (Phil, {1,2,3}), (Kansas, {1,2,3})),
((Phil, {1,3,4}), (English, {1,3,4}), (Phil, {4,5,6}), (Virginia, {4,5,6})),
((Phil, {1,3,4}), (English, {1,3,4}), (Norman, {1,2,5,6}), (Virginia, {1,2,5,6})),
((Phil, {1,3,4}), (English, {1,3,4}), (Norman, {7,8}), (Texas, {7,8})),
((Norman, {1,2}), (English, {1,2}), (Phil, {1,2,3}), (Kansas, {1,2,3})),
((Norman, {1,2}), (English, {1,2}), (Phil, {4,5,6}), (Virginia, {4,5,6})) ,
{((Norman, {1,2}), (English, {1,2}), (Norman, {1,2,5,6}), (Virginia, {1,2,5,6})) ,
((Norman, {1,2}), (English, {1,2}), (Norman, {7,8}), (Texas, {7,8})) ,
((Norman, {5,6}), (Calculus, {5,6}), (Phil, {1,2,3}), (Kansas, {1,2,3})),
((Norman, {5,6}), (Calculus, {5,6}), (Phil, {4,5,6}), (Virginia, {4,5,6})) ,
((Norman, {5,6}), (Calculus, {5,6}), (Norman, {1,2,5,6}), (Virginia, {1,2,5,6})) ,
((Norman, {5,6}), (Calculus, {5,6}), (Norman, {7,8}), (Texas, {7,8})) }

Let this be relation S¢ over the relation scheme {SName, Course, HName, State}. O

.......

- -t e . R . _“e % Lt t- R T R R AN AL e A ' e
R R I A I S A N A A SR S AN NEAT RN I AT AT AT N

taxab tad cab ol Uad Gad' g LaniE Aty UV VT R WO WU WL WA P WO 6 put aat tatodas gat g 8 Rt Bt ' a et p b At -ad s iatd ol Y ’

2.2.4 Selection
Let R be an historical relation of m-tuples. Also, let F be a boolean function involving

h e Attribute names Ny, ..., Np;
e Constants from the domains Dy, ..., Dm;
e Relational operators <, =, >; and

e Logical operators A, Vv, and -

where, to evaluate F for a tuple r, r € R, we substitute the value components of the attributes of
r for all occurrences of their corresponding attribute names in F. Then the historical seiection of
R, denoted by dr(R), is defined as

» Gp(R) 2 {r™ | r € R A F(value(ry), ..., value(rn))}
> Thus, ¢ is identical to o in the snapshot algebra. 67 (R) is simply the set of tuples in R for which
! F is true.

EXAMPLE.

&SNanu:HNamc(S«t) =

o { ((Pnil, {1,3,4}), (English, {1,3,4}), (Phil, {1,2,3}), (Kansas, {1,2,3})),

X ((Phil, {1,3,4}), (English, {1,3,4}), (Phil, {4,5,6}), (Virginia, {4,5,6})),

' ((Norman, {1,2}), (English, {1,2}), (Norman, {1,2,5,6}), (Virginia, {1,2,5,8})) ,
. ((Norman, {1,2}), (English, {1,2}), (Norman, {7,8}), (Texas, {7,8})),

. ((Norman, {5,6}), (Calculus, {5,6}), (Norman, {1,2,5,6}), (Virginia, {1,2,5,6})) ,
A ((Norman, {5,6}), (Calculus, {5,6}), (Norman, {7,8}), (Texas, {7,8})) }

Let this be relation Ss over the relation scheme {SName, Course, HName, State}. O

2.2.5 Projection

4 Let R be an historical relation of m-tuples and let ay, ..., a, be distinct integers in the range 1
to m. Then the historical projection of R, denoted by 7'rNal, s Nan (R), is defined as

Tt mv Bl

~ v{ et V" A IOy _: R

NN

RN AL

AN, o N (R)2{u" | (I, 1<1< 0, Ve, t € valid(uw),
dr,(re R
AYh, 1 < h < n, value(u,) = value(r,,)
A t € valid(ry,))

)
A (Vr,(r€ R AV, 1 <1< n, value(r,,) = value(y;)),

Vh, 1 < h < n, valid(rs,) C valid(up)

)
A3, 1 <1< n A valid(w) # 0)

}

Like the projection operator for snapshot relation, the projection operator for historical relations
retains, for each tuple, only the tuple components that correspond to the attribute names in
{Na,, ..., Ng }. All other tuple components are removed. Value-equivalent tuples in the resulting
set are then combined and tuples that have an empty valid component for all tuple components
are removed.

EXAMPLE. #sName, state(Ss) = { ((Phil, {1,3,4}), (Kansas, {1,2,3})),
((Phil, {1,3,4}), (Virginia, {4,5,6})),
((Norman, {1,2,5,6}), (Virginia, {1,2,5,6})),
((Norman, {1,2,5,6}), (Texas, {7,8})) }

Let this be relation Sg over the relation scheme Enrollment = { Name, State}. Also assume that
in this relation the time-stamp associated with the value of the attribute Name represents the
interval(s) when the specified student was enrolled and that the time-stamp associated with the
value of the attribute State represents the interval(s) when the student was a resident of the
specified state. O

The operator # also supports projections on expressions. For an arbitrary n, let Evalue;, 1 <
{ < n, be an arbitrary expression involving the attribute names N,, 1 < a < m. Evalue is
evaluated, for a tuple r, r € R, by substituting the value components of the attributes of r for
all occurrences of their corresponding attribute names in Evalue;. Also, let Evalid;, 1 < { <
n, be an arbitrary expression involving the attribute names N,, 1 < a < m, where Fvalid,
is evaluated for a tuple r, r € R, by substituting the valid components of the attributes of r
for all occurrences of their corresponding attribute names in Evaltd;. In addition, assume that
evaluation of Fvalue for every tuple r produces an element of the domain [y, 1 < b < m, and that
evaluation of Evalid; produces an element of the domain #(7). Then the definition of %, now
denoted by (pyatue,, Evalid,), ..., (Evaluen, Evalid,)(), 1S constructed from the definition above simply
by substituting Evalue,(r) for value(r,y,), Evalidy(r) for valid(r,,), Evalue(r) for value(r,,), and
Evalidi(r) for valid(rs,). Note that this definition of the # operator is simply a more general

.
-
[)
oy
A
)
i)
=
.

version of the definition presented earlier, where N,,, 1 <! < n, is assumed to be the ordered pair
of expressions (Ng,, Nu,).

2.2.6 Historical Derivation

The historical derivation operator § is a new operator that does not have an analogous snapshot
operator. It replaces the time-stamp of each attribute in a tuple with a new time-stamp, where
the new time-stamps are computed from the existing time-stamps of the tuple’s attributes. § is
effectively a combination of selection and projection on a tuple’s attribute time-stamps.

Several functions, defined on the domains T and (T), are used either directly or indirectly
in the definition of the historical derivation operator. Before defining the derivation operator itself,
we describe informally these auxiliary functions. Formal definitions appear in Appendix B.
FIRST takes a set of times from the domain £(T) and maps it into the earliest time in the set.

LAST takes a set of times from the domain #(T) and maps it into the latest time in the set.

PRED is the predecessor function on the domain T. It maps a time into its immediate predecessor
in the linear ordering of all times.

SUCC is the successor function on the domain T. It maps a time into its immediate successor in
the linear ordering of all times.

EXTEND maps two times into the set of times that represents the interval between the first time
and the second time.

INTERVAL maps a set of times into the set of intervals containing the minimum number of
non-disjoint intervals represented by the input set. Each time in the input set appears in exactly
one interval in the output set and each interval in the output set is itseif represented by a set of

times.

EXAMPLE. Consider the following tuple taken from the relation Sg defined previously:

= ((Norman, {1,2,5,6}), (Texas, {7,8}))

then INTERVAL (valid(r(Name))) = {{1, 2}, {5, 6}}
INTERVAL(valid(r(State))) = {{7, 8}} O

Given these auxiliary functions, we can now define the historical derivation operator on his-
torical relations. Let R be an historical relation of m-tuples. Let V,, 1 < a < m, be temporal
functions involving

LI T e P)

)

.r;‘_.‘"'f:-;‘f B A0 P M AR)

PRy e W W W ey

- -

T T R T R T TR e 8 08 90V hath aVh a1 ath e ah A0E PA gty gt g\l ata aal ath Q)R aT4 AVA ot

e Attribute names Ny, ..., Np;
o Constants from the domain I of non-disjoint intervals defined in Appendix B;
e Functions FIRST, LAST, and EXTEND,; and

e Set operators U, N, and —;
and let G be a boolean function involving

e Temporal functions, as just described;
¢ Relational operators <, =, and >; and

e Logical operators A, V, and —.

The functions G and V;, 1 < a < m, are always evaluated for a specific assignment of non-
disjoint intervals to attribute names Ny, ..., Nn. G evaluates to either true or false and V,
evaluates to an element of £(7T). For a tuple r, r € R, and intervals Iy, 1 < ¢ < m, Iy €
INTERVAL(valid(r.)), we evaluate G(Iy,, ..., In,) by substituting Iy, for all occurrences of
N. in G. Likewise, we evaluate V;(Iy,, ..., In,) by substituting Iy, for all occurrences of N,
in V,. If any one of r’s attribute values has a disjoint time-stamp, there will be multiple distinct
evaluations of G (and V) for r, one for each possible assignment of intervals to attribute names,
each resulting in a value of true or false for G (and a set of time quanta for V,).

We can now define the derivation of the historical relation R, denoted &g, v,, ... v..(R), as

6c,v,, ..,va(R) S {u™|3r,(reR
AVa,1<a<m,
(value(ug) = value(r,)
A (Vt, t € valid(u,),
3ln, -+- 3p,,, (In, € INTERVAL(valid(ry)) A -+-

A Iy, € INTERVAL(valid(rm))
ANGUIny,y -0y ING)
AteVa(Ing, ..., IN,)

)
Ay, -+ YIn,, (IN, € INTERVAL(valid(ry)) A ---
Aly, € INTERVAL(valid(rm))
ANG(In,, ..oy INL)),
ValIn,, -, In,) C valid(u,)

10

§ et et T Y " e At A A A L e e e N e e
PO AN TN AN AN S e g

[A

SRANIIL AFN

) f

Ada, 1 <a<mA valid(u,) #0

)}

For a tuple r, r € R, the historical derivation operator determines new time-stamps for r’s at-
tributes. The historical derivation function first determines all possible assignments of intervals
to attribute names for which the boolean function G is true. For each assignment of intervals to
attribute names for which G is true, the operator evaluates V,, 1 < a < m. The sets of times
resulting from the evaluations of V, are then combined to form a new time-stamp for aitribute
N,. For notational convenience, we assume that if only one V-function is provided, it applies to
all attributes.

EXAMPLES.

5(Namn$tate)=Namc, Ncme(SG) ={ ((Phﬂ) {1})’ (Ka'nsas:{l}» ’
{(Norman, {1,2,5,6}), (Virginia, {1,2,5,6})) , }

In this example, G is (Name N State) = Name and V3 and V3 are both Name. A student tu- y
ple s, s € Sg, satisfies condition G if the student had at least one interval of enrollment (i.e.,
IName € INTERVAL(valid(s(Name)))) during which his home state (i.e, State) did not change
(i.e., (INameN Istate) = IName, Where Isige € INTERVAL(valid(s(State)))). The new time-stamp 1
for each attribute of a tuple that satisfies G for some assignment of intervals Ingme and Iseqe. is
simply the union of the Iygm. intervals from each assignment of intervals that satisfy G. In the 4
first tuple in Sg, there are three intervals, two assigned to the attribute Name ({1}, {3,4}) and
one assigned to the attribute State ({1,2,3}). From this tuple, we find that Phil was a resident of

Kansas during his first interval of enrollment (G({1}, {1,2,3}) = {1} n {1,2,3} Y {1}) but was
a resident of Kansas during only part of his second interval of enrollment (G({3,4}, {1,2,3}) =
{3,4}n{1,2,3} # {3,4}). Hence, this tuple’s attributes are assigned a time-stamp of {1} in the re-
sulting relation. From the second tuple in Sg we find that Phil was not a resident of Virginia during
his first interval of enrollment (G ({1}, {4,5,6}) = {1} n{4,5,6} # {1}) and lived in Virginia dur-
ing only part of his second interval of enrollment (G({3,4}, {4,5,6}) = {3,4} N {4,5,6} # {3,4}).
Hence, the time-stamp for this tuple’s attributes would be assigned the empty set in the result-
ing relation except the definition of the historical derivation operator disallows tuples whose at-
tributes all have an empty time-stamp. This tuple is therefore eliminated and does not appear
in the resulting relation. From the third tuple in Sg we find that Norman was a resident of Vir- J

ginia during both of his intervals of enrollment (G({1,2}, {1,2}) = {1,2} n{1,2} Y {1,2} and

G({s,6}, {5,6}) = {5,6}n{5,6} A {5,6}). Hence, this tuple’s attributes are assigned a time-stamp)
of {1,2,5,6} in the resulting relation. From the fourth tuple in Sg we find that Norman was not a -
resident of Texas at any time during his enrollment (G({1,2}, {7,8}) = {1,2}n{7,8} # {1,2} and
G({5,6}, {7,8}) = (5,6} n{7,8} # {5,6}); this tuple is therefore eliminated from the resulting

S e PAPLILN

relation. ’
o\
Byt
R
11
™
| 4
*
&
-‘\-".'-f‘.f_‘ ~'v' ,.-'\f.‘f - e 1"‘4'.. -I‘vf‘-"‘\d: NES CL RSNy .“.'\f\.;\.;_‘--_'..‘\-’_..._' A .‘-*\.;\r_-.'\-'\.’ " q..\--'.‘..'_‘.,'_..:_.. ‘..:_ .:_-_:\(_‘
Bos albusadh B80S oy il L 0} AN N PV, . 2 -

k!

LMLV R L L T P e D] .--';--..---‘1.‘.‘....--._‘--.-v--.-.. - D T I S
s ol e _ AL LD (o S €N ,h .\-_.(.. . .F\-\ e St .-‘ CooE R .-_, -(,‘..-..,.r r-

5(N¢m¢n8t¢te);é1\'amcA(NamenState)#O, NamcnStan(SG) = { ((Phil, {3}, (Kansas, {3})) ,

((Phil, {4}), (Virginia, {4})) }

A student tuple s, s € Sg, satisfies condition G if the student had at least one interval of enrollment
during which his home state changed. The new time-stamp for each tuple that satisfies G for some
assignment of intervals Iy m. and gy, is the union of Inygme N Isias. from each assignment of
intervals that satisfy G. From the first tuple in S¢ we find that Phil had one interval of enrollment

during which his home state changed (i.e., {3,4} N {1,2,3} ;‘é {3,4} and {3,4} N {1,2,3} ;).
Hence, this tuple’s attributes are assigned a time-stamp of {3,4} N {1,2,3} = {3} in the resulting
relation. From the second tuple in Sg we find that Phil had one interval of enrollment during which
his home state changed. Hence, this tuple’s attributes are assigned a time-stamp of {4} in the
resulting relation. Note that Norman does not satisfy the restriction; his home state was the same
during his two periods of enrollment. Hence, the third and fourth tuples are eliminated from the
resulting relation. O

Note that the historical derivation operator actually performs two functions. First, it performs
a selection function on the valid component of a tuple’s attributes. For a tuple r, if G is false when
an interval from the valid component of each of r’s attributes is substituted for each occurrence
of its corresponding attribute name in G, then the temporal information represented by that
combination of intervals is not used in the calculation of the new time-stamps for r’s attributes.
Secondly, the derivation operator calculates a new time-stamp for attribute N;, 1 < a < m, from
those combinations of intervals for which G is true, using V,. If V3, ..., V,, are all the same
function, the tuple is effectively converted from attribute time-stamping to tuple time-stamping.

The derivation operator is necessarily complex because we allow set-valued time-stamps; it
would have been less complex if we had disallowed set-valued time-stamps. Then the derivation
operator could have been replaced by two simpler operators, analogous to the selection and projec-
tion operators, that would have performed tuple selection and attribute projection in terms of the
valid components, rather than the value components, of attributes. But, as we will see in Section 4,
disallowing set-valued time-stamps would have required that the algebra support value-equivalent
tuples, which would have prevented the algebra from having several other, more highly desirable
properties.

2.3 Aggregates

Aggregates allow users to summarize information contained in a relation. Aggregates are catego-
rized as either scalar aggregates or aggregate functions. Scalar aggregates return a single scalar
value that is the result of applying the aggregate to a specified attribute of a snapshot relation.
Aggregate functions, however, return a set of scalar values, each value the result of applying the
aggregate to a specified attribute of those tuples in a snapshot relation having the same values for
certain attributes. Database manageni2nt systems based on the relational model typically provide
several aggregate operators. For example, Ingres [Stonebraker et al. 1976| provides a count, sum,

12

LR)

e O

.--.;y'l-"'wt' AT U U LAV TR Sl u gl tal Say Baf Sah @ W R W OXN .l g o'k ath m'4 at - TN T

- e e
>

,:‘. average, minimum, maximum, and any aggregate operator. Ingres also provides two versions of the
count, sum, and average operators, one that aggregates over all values of an attribute and one
that aggregates over only the unique values of an attribute.

f: Several researchers have investigated aggregates in time-oriented relational databases [Ben-

' Zvi 1982, Jones et al. 1979, Navathe & Ahmed 1986, Snodgrass, et al. 1987, Tansel, et al. 1985].

: Their work reflects the consensus that aggregates when applied to historical relations should return

) not a scalar value, but a distribution of scalar values over time. Jones, et al. also introduced the
concepts of instantaneous aggregates and cumulative aggregales. Instantaneous aggregates return,
for each time t, a value computed only from the tuples valid at time t. Cumulative aggregates

P : return, for each time t, a value computed from all tuples valid at any time up to and including
t, regardless of whether the tuples are still valid at time t. Note that a time t has meaning only

K when defined in terms of the time granularity. Hence, instantaneous aggregates can be viewed as
& aggregates over an interval whose duration is determined by the granularity of the measure of time
x being used. Others have generalized the definition of instantaneous and cumulative aggregates
% by introducing the concept of moving aggregation windows [Navathe & Ahmed 1986]. For an
::: aggregation window function w from the domain 7 into the non-negative integers, an aggregate

¥ returns, for each time t, a value computed from tuples valid either at time ¢ or at some time in
the interval of length w(t) immediately preceding time t. Hence, an instantaneous aggregate is
. an aggregate with an aggregation window function w(t) = O and a cumulative aggregate is an

b aggregate with an aggregation window function w(t) = co.

L

,: Klug introduced an approach to handle aggregates in the snapshot algebra [Klug 1982]. His
. approach makes it possible to define aggregates in a rigorous way. We use his approach to define

)

two historical aggregate functions for our algebra:

g e A, that calculates non-unique aggregates, and

:d o AU , that calculates unique aggregates.

&

d These two historical aggregate functions serve as the historical counterpart of both scalar aggregates
2 and aggregate functions.

Fal

¥ The historical aggregate functions must contend with a variety of demands that surface as
.

parameters (subscripts) to the functicns. First, a specific aggregate (e.g., count) must be specified.
Secondly, the attribute over which the aggregate is to be applied must be stated and the aggregation
window function must be indicated. Finally, to accommodate partitioning, where the aggregate is
applied to partitions of a relation, a set of partitioning attributes must be given. These demands
complicate the definitions of A and AU, but at the same time ensure some degree of generality to
these operators.

[2)
b

v
[SNy

LA

\ For both definitions, let R be an historical relation of m-tuples over the relation scheme
e Np={Ni, ..., Nn}. Also let a, ¢;, ..., cn be distinct integers in the range 1 to m and Q be an
_:: historical relation over the relation scheme Ng, with the restrictions that Ng C Ng and {N,, N,

; ...y N, } © Ng. Finally, let X = {N¢,, ..., Ne,}. If X is empty, our historical aggregate functions

simply calculate a single distribution of scalar values over time for an arbitrary aggregate applied
,3 to attribute N, of relation R. If X is not empty, our historical aggregate functions calculate, for

+
.: 13
k. &

e

LR

ERTEPL TL B LT "'-'_\.;'."-"'.'N‘,"'.-\.r\.r*\.'.'.'.-\.'\'.‘\'.\.'."',-k“ %;.\:,'~:.‘\'_.')

R N N A

d

U U U L U LTI U T T U AN U T UM YIS U TUT YUY DS Y oOwUTUT U U to-guy ate a¥o gt Wy i gl * . FY P RE " gE R

)
-

rd

g

each subtuple in Q formed from the attributes X, a distribution of scalar values over time for an
arbitrary aggregate applied to attribute N, of the subset of tuples in R whose values for attributes
X match the values for attributes X of the tuple in Q. Hence, X corresponds to the by-list of an
aggregate function in conventional database query languages. Assume, as does Klug, that for each
aggregate operation (e.g., count) we have a family of scalar aggregates that performs the indicated
aggregation on R (e.g., COUNTy,, COUNTy,, ..., COUNTy, wWhere COUNTy,, 1 < a < m, counts the
(possibly duplicate) values of attribute N, of R). We will define our historical aggregate functions
in terms of these scalar aggregates.

PR

2.3.1 Partitioning Function

A Before defining the historical aggregate functions 4 and AU , we define a partitioning function that
will be used in their definitions.

f‘

\ PARTITION(R, ¢, t, w, N,, X) &

' {u™ | 3r),(re R A VI, 1<1< n, value(r,) = value(gc,)

3 AVd, 1 < d < m, value(ug) = value(ry)

3 AVd, 1<d<m,

((ve, t' € valid(uq),

- 314, (I; € INTERVAL(valid(ry))

At—w(t) <1— (I;nEXTEND(1, t) # 0)
At-w(t) 21— (LNEXTEND(t - w(t), t) # 0)
Athe Iy

)

AL A IS

)

A (¢14, (I3 € INTERVAL(valid(rg))
, At-uw(t) <1- ([;nEXTEND(, t) # 0)
- At—w(t) 21— (IgNEXTEND(t — w(t), t) # 0))
\ Iy C valid(u,)

)

p A valid(u,) # 0

) AVl 1 <1< n, valid(u,,) # 0

D)

.)}

3

)

t

. where ¢ € Q,t € T, w is an aggregation window function, and 1 < @ < m. This function retrieves
from R those tuples that have the same value component for attribute N.,, 1 <[/ < n, as ¢ and

14
)
R A e e o e e e L o o L S 5

have time t or some time in the interval of length w(t) immediately preceding t in the time-stamp
3 of attributes Ng, N¢,,..., and N.,. Note that the time-stamp of attribute N4, 1 < d < m, in the
resulting relation is constructed from those intervals in the time-stamp of attribute N4 in R that
contain time ¢ or some time in the interval of length w(t) immediately preceding t. The predicates

t-—w(t) <1—---and t—w(t) > 1 — --- are used here to ensure that PARTITION is well-defined
as EXTEND is defined only for elements in the domain T.

’
[
EXAMPLES.
L~ PARTITION(Ss, (), 5, 0, Name, 8) = { ((Norman, {5,6}), (Virginia, {5,6}))
e
S ((Norman, {5,6}), (Texas, 0)) }
. Because time 5 is specified and the aggregation window function, denoted by zero, is the constant

. function w(t) = O, tuples are selected whose time-stamp for attribute Name overlaps time 5.
. Only the third and fourth tuples in Sg satisfy this requirement. The partitioning function here
- effectively returns the tuples for those students who were enrolled in school at time 5. Note that
L the time-stamp of each attribute in the selected tuples has been restricted to the interval from the

- attribute’s original time-stamp overlapping time 5, if any.

b PARTITION(Ss, ((Phil, {1,3,4}), (Virginia, {4,5,6})), 5, 0, Name, {State}) =

- { ((Norman, {5,6}), (Virginia, {5,6})) }

v where Q is here assumed to be Sg. Tuples are selected for those students who were enrolled in

- school and a resident of Phil’s state (Virginia) at time 5. Only the third tuple in Sg satisfies this

:: requirement. Although Phil was a resident of Virginia at time 5, he was not enrolled in school at

>, time 5. Hence, the second tuple in Sg is not included in this partition.

N

o PARTITION(Se, ((Phil, {1,3,4}), (Virginia, {4,5,6})), 5, 1, Name, {State}) =

X { {((Phil, {3,4}), (Virginia, {4,5,6}))
((Norman, {5,6}), (Virginia, {5,6})) }

. Here tuples are selected for those students who were enrolled in school and a resident of Virginia

o within a year (w(t) = 1) of time 5. Both the second and third tuples in Sg satisfy this requirement.

’ The second tuple in Sg is now included in the partition because Phil was a resident of Virginia and

enrolled in school at time 4. O

: 2.3.2 Non-unique Aggregates
&,

::.

‘ The historical aggregate function A calculates, for each tuple in @, a distribution of scalar values
? over time for an arbitrary aggregate applied to attribute N, of the subset of tuples in R whose
v
v
] 15
by

{ - « AN T AT " M A" " KT A *» " 8 "8 "2 TR " s 4T e " - NI W TR W LI LI R T S L U A
-\.'-'s-.'-.‘. NOON -.,.(.d,.,.‘,s'..-. S R N NN O NI RN R IO NN SRR

PP 4

=

| . |
| A AR

s’ ‘»'.-"',

value component for attribute N.,, 1 <! < n, matches the value component for attribute N, of
the tuple in Q. If X is empty, A simply calculates a single distribution of scalar values over time
for the aggregate applied to attribute N, of R. If we let f represent an arbitrary family of scalar
aggregates and w represent an aggregation window function, then we can define A on the historical
relations Q and R, denoted by A/ o, n, x(Q, R), as

e

Ag w N, x(Q, R)
Une, e t(Fxuqnvegy (a1l (v, (1)) (g€ Q
At — w(t) <1 — (valid(gs) "EXTEND(1, t) # 0
AV 1<l<n,
valid(g.,) " EXTEND(1, t) # 0)
At —w(t) > 1 — (valid(ge) NEXTEND(t — w(t), t) #0
AV 1<1<n,
valid(q.,) N EXTEND(t — w(t), t) # 0)
Ay = fn.(g, t, PARTITION(R, ¢, t, w, N,, X))
)

where “||” denotes concatenation and N is the attribute name assigned the aggregate value
(y, {t}). If X is not empty, function A first associates with each time t the partition of relation Q
whose tuples have ¢, or a time in the interval of length w(t) immediately preceding ¢, in the valid
component of attributes Ny, N.,, ..., and N,,. For each of these partitions, A then constructs a set
of historical tuples. Each tuple in the set contains all the attributes X of a tuple ¢ in the partition
and a new attribute. This new attribute’s valid component is the time t corresponding to the
partition and its value component is the scalar value returned by the aggregate fy,, when fn, is
applied to the partition of R whose tuples have value components that match ¢’s value components
for attributes X and whose valid components for attributes N,, N¢,, ..., and N, overlap either t
or the interval of length w(t) immediately preceding t. Then A performs an historical union of the
resulting sets of historical tuples to produce a distribution of aggregate values over time for each
tuple in Q. If X 13 empty, A constructs for each time ¢ an historical relation that is either empty or
contains a single tuple. If the valid component of attribute N, of no tuple r in R overlaps t or the
interval of length w(t) immediately preceding ¢, then the historical relation is empty. Otherwise,
the historical relation contains a single tuple whose valid component is the time t and whose value
component is the scalar value returned by the aggregate fy,, when fy, is applied to the partition
of R whose tuples have a valid component for attribute N, that overlaps either t or the interval of
length w(t) immediately preceding t. Then A performs an historical union of the resulting sets of
historical tuples to produce a single distribution of aggregate values over time.

Note that a tuple and a time are passed as parameters to the scalar aggregate fn,, along with
a partition of R, in the definition of A. Although most aggregate operators can be defined in terms
of a single parameter, the partition of R, the additional parameters are present because aggregates
that evaluate to events or intervals, one of which is defined in Section 3.3, require them.

16

.......
-

\ \' n_!\ \- -',\:- o \‘-'. O] .. T

AN

EXAMPLES. AGCOUNT, 0, state, 0(Fstate(Ss), Se) = { ((1, {3,4,7,8})),
(2 {1,2,5,6))) }

The function A computes the number of states in which enrolled students resided. Because w(t)=0
and the time granularity of Sg is a semester, the resulting relation represents aggregation by
semester. Hence, the aggregate is in effect an instantaneous aggregate. For the interval {1,2},
there were two states (Kansas in the first tuple and Virginia in the third tuple). For the interval
{3,4}, there was one state (Kansas in the first tuple at time 3 and Virginia in the second tuple at
time 4). For the interval {5,6}, there also was only one state (Virginia), but it appeared in both
the second and third tuples. It was counted twice because the scalar aggregates embedded within
A aggregate over duplicate values. For the interval {7,8}, there was only one state (Texas in the
fourth tuple).

ACOUNT 1, State, 0(Fstate(Se), { ((1, {8,9})) .
((2, {1,2,3,4,5,6})) ,

(3, {M) }

Again, A computes the number of states in which enrolled students resided, but now w(t) = 1.
Hence, the resulting relation now represents aggregation by year (assuming two semesters per year).
Although nine does not appear in the time-stamp of attribute State in any tuple in Sg, a count of
one is recorded at time 9 because a tuple, the fourth tuple in Sg, falls into the aggregation window
at time 9.

;{COUNT,oo.State.@(’i’State(SG)’ SG) = { ((2’ {1»2a3})> ’
(3, {4,5,6})),
(@, (1.8..3) }

Now, with w(t) = oo, A computes a cumulative aggregate of the number of states in which enrolled
students resided.

A"‘OUNT 0, Name, {State}(SG’ Se ={ ((Kansas’ {1’2’3})’ (1’ {1’2’3}))
((Virginia, {1,2,4,5,6}), (1, {1,2,4}))
((Virginia, {1,2,4,5,6}), (2, {5,6}))
((

Texas, {7,8}), (1, {7:8}» }

Here, A computes the instantaneous aggregate of the number of enrolled students who resided in
each state. In effect, the aggregate is computed for each subset of tuples in Sg having the same
value for the attribute State. For example, the first tuple is computed by selecting all the tuples
in S¢ with a state of Kansas and then performing the aggregate on this (smaller) set. O

17

............... 3 Wt e .\;\ < \"J\. W AT ‘_.'_.: VT AT T TN

| -

-
>

2.3.3 Unique Aggregates

l. -

A

)

) The function A allows its embedded scalar aggregates to aggregate over duplicate attribute values.
" We now define an historical aggregate function AU, identical to A with one exception; it restricts
'7 its embedded scalar aggregates to aggregation over unique attribute values. We define AU on the
Y historical relations @ and R, denoted by AUy, o, N,, x(@, R), as

AV; o N x(Q, R) &
- Unt, e T(Fxuingy (a1l (v, {1}) g€ Q
At—w(t) < — (valid(g,) NEXTEND(1, t) # 0
, AV 1<I<n,
" valid(q.,) "EXTEND(1, t) # 0)
At—w(t) 21— (valid(gs) "EXTEND (¢t — w(t), t) # 0
AV 1<I<n,

valid(g,,) "EXTEND(t - w(t), t) # 0)

it Ay=fn.(q t, Srue, (AN, (PARTITION(R, ¢, t, w, N, X))))
!)

- This definition differs from that of A only in that the historical projection on attribute N, of
R PARTITION(...) followed by the historical derivation eliminates duplicate values of the aggre-
h gated attribute before the scalar aggregation is preformed.

!

: EXAMPLE. AUcount,o, state, o(Fstate(Se), Se) = { ((1, {3,4,5,6,7,8})),

. (@ {120) }

This relation differs from the non-unique variant only during the interval {5,6}. Here, Virginia
is correctly counted only once, even though there are two tuples valid during this interval with a
, state of Virginia. O

2.3.4 Expressions in Aggregates

The functions A and AU allow expressions to be aggregated and support aggregation by arbitrary

expressions. Let Eaggregate be an arbitrary expression involving u historical aggregate functions.

Also, assume that the v'? historical aggregate function applies the scalar aggregate f, to attribute

N,, where the aggregation window function is w,, and the partitioning attributes are X,. Then
. the definition of A, now denoted by

AL, feowr, o we, Nay, o Naw, Xu, oo Xo, Eaggregate (@, R),

18

LATLE '.v R
ot % \- J‘N-’l‘

R I S Y R R PR O AT N A T
R R R A ot I A A A I A SN

1w gt 'f. I,’ *

f Y o Bat 2" Ba® Fa® Bavoda 68’ 28y ok ‘ald a'1 2td.a'% &’ 040 Sall’ 128 ¥ PR Mab bah val Lo a) taha Ake dte 2'e hin R rTY YNV SR T e

is constructed from the definition of A above simply by substituting y = Faggregate' for y =
In.(...). Eaggregate' is Eaggregate where each reference to the v'* aggregate has been rep]aced
by the expression f,n,, (¢, ¢, PARTITION(R g, t, wy, Na,, X,)). With these changes, A

allows expressions to be aggregated. AU can be modified similarly.

‘ If A and AU are to support aggregatxon by arbitrary expressions, changes must be made to
the definitions of PARTITION, A and AU given above. First, let Evalue;, 1 <! < o, be an

expression involving the attribute names N, ..., N.,. Evalue is evaluated for a tuple r, r € R,
by substituting the value components of the attributes of r for all occurrences of their corresponding
attribute names in Evalue;. Secondly, let X = {Evalue;, ..., Evalue,} and d;, ..., dp be

the distinct integers in the range 1 to m such that N;,, 1 < h < p, appears in at least one
' Evalue;,1 <1 < 0. Then new definitions of PARTITION, 2, and AU are constructed from the
definitions above simply by substituting the predicate Vi, 1 <! < o, Evalue;(r) = Evalue(q) for
the predicate VI, 1 <[< n, value(r.,) = value(q,,) and the predicate W, 1 <! < p, valid(uq,) # 0
for the predicate VI, 1 <! < n, valid(u,,) # @ in the definition of PARTITION and substituting
p for n and valid(qy,) for valid(g,) in the definitions of A and AU. With these changes, A and AU '
support aggregation by arbitrary expressions.

2.4 Preservation of the Value-equivalence Property

Theorem 1 The operators U, =, X, &, %, 5, A, and AU all preserve the value-equivalence property
of historical relations.

PROOF. For the operators U, =, x, &, and § we show that the contrapositive of the theorem :
holds, that is, if there are value-equxvalent tuples in an operator’s output relation, then there are
value-equivalent tuples in at least one of its input relations. For the operators #, A, and AU we
show by contradiction that there cannot be value-equivalent tuples in their output relations.

Case 1. U. Assume that QU R contains at least two value-equivalent tuples. From the definition
of U, each tuple in QU R has a value-equivalent tuple in Q, R, or both. If two value-equivalent
tuples i#; and #2 in QU R do not have a value-equivalent tuple in R, then both are tuples in Q.
Similarly, if they do not have a value-equivalent tuple in @, then both are tuples in R. If they
have a value-equivalent tuple in both Q and R, then each was constructed from a value-equivalent
tuple in @ and a value-equivalent tuple in R. If both 43 and #; had been constructed from the ;
same tuple in @ and the same tuple in R, then @, and i, would be, by definition, the same tuple.
Hence, they were constructed from different value-equivalent tuples in Q, R, or both. |

Case 2. —. Assume that Q = R contains at least two value-equivalent tuples. From the definition

of —, each tuple in Q — R has a value-equivalent tuple in Q but not in R or a value-equivalent tuple

in both Q and R. If two value-equivalent tuples i, and #; in @ — R do not have a value-equivalent

tuple in R, then both are tuples in @. If they have a value-equivalent tuple in both @ and R,

then each was constructed from a value-equivalent tuple in Q and a value-equivalent tuple in R. .

J If both 4; and 12 had been constructed from the same tuple in @ and the same tuple in R, then .
@; and 4s would be, by definition, the same tuple. Hence, they were constructed from different
value-equivalent tuples in Q, R, or both.

19

I.\ls-

Ll
‘.I.

A

s
-Tan

X200

R
B}, S
e

[

}.f

.
-

7 A

a

2 M

33

Y

A NS

.

«’e

Ny

Aty

8 5% 5 5,05

oA

[WP O b A

Case 3. x. Assume that Q x R contains at least two value-equivalent tuples. From the definition
of x, each tuple in Q@ x R is constructed from a tuple in Q and a tuple in R. If two value-equivalent
tuples #; and #2 in @ X R had been constructed from the same tuple in Q and the same tuple in
R, then #; and 42 would be, by definition, the same tuple. Hence, they were constructed from
different value-equivalent tuples in Q, R, or both.

Case 4. 6. Assume that 6r(R) contains at least two value-equivalent tuples. From the definition
of 5, each tuple in 67(R) is a tuple in R. Hence, any two value-equivalent tuples in ¢ (R) are also
tuples in R.

Case 5. %. Assume that #n, , ., N,,(R) contains at least two value-equivalent tuples. For any
two such tuples there will be at least one time that appears in the time-stamp of an attribute
of one tuple but not the other tuple; otherwise, they would be identical. Hence, let @#; and i,
be two value-equivalent tuples in #y, , . N,,(R) such that there is a time t in the time-stamp of
attribute Ny, 1 <! < n, of &; but not &;. From the first clause of the definition of #, there is
a tuple r, r € R, that has ¢ in the time-stamp of attribute N,, and the same value for attributes
Ng,, ..., N, as &;. But, from the second clause of the definition, the time-stamp of attribute
Ny, of tuple r is a subset of the time-stamp of attribute Ng, of 43, as r also has the same value for
attributes Ng,, ..., Ng, as 42. Hence, t is in the time-stamp of attribute Nj, of &2, contradicting
the assumption that t is in the time-stamp of attribute N,, of @) but not i;. Similarly, we arrive at
a contradiction if we assume that there is a time ¢ in the time-stamp of attribute ¥,, 1 <! < n,
of 4z but not #3. Hence, 4; and #; have identical attribute time-stamps, which implies that they
are the same tuple, contradicting the assumption that ANay, - Nan (R) contains at least two value-
equivalent tuples. Note that the output relation of #, unlike the output relations of U, =, x, and
&, would not contain value-equivalent tuples even if there were value-equivalent tuples in its input
relation.

Case 6. 6. Assume that 8¢ v,, .., v. (R) contains at least two value-equivalent tuples, u; and uj.
From the definition of §, each tuple in &g, v,, .. v, (R) is constructed from one value-equivalent
tuple in R. If 4¥; and 4, were constructed from the same value-equivalent tuple r, r € R, then they
would be the same tuple, as é requires not only that every time ¢ in the time-stamp of attribute
Ni, 1< a < m, of either 4 or uz be in Vg(...) and satisfy G(...) for some assignment of intervals
from the time-stamps of r’s attributes to attribute names but that V,{...) be a subset of the
time-stamp of attribute N, of both u; and t;. Hence, ¢y and t; were constructed from different
value-equivalent tuples in R.

Case 7. A. Assume that /’ff, w, N., x(@, R) contains at least two value-equivalent tuples. From
Case 1 above, if /)f/, w, N, x(@, R) contains value-equivalent tuples, then the input relation to A’s
outermost U operator contains value-equivalent tuples. But, this relation is the output of #, whose
output relation was shown in Case 5 above never to contain value-equivalent tuples. Hence, our
assumption that /i/, w, N., x(@, R) contains at least two value-equivalent tuples is contradicted.

Case 8. AU. Simply replace A with AU in Case 7. §

20

'
o
! 2.5 Summary
L
We first introduced historical relations, in which attribute values are associated with set-valued
: time-stamps. We then defined eight historizal operators:
" : NP
¥ e Five operators are analogous to the five standard snapshot operators: union (U), difference
. (=), cartesian product (x), selection (&), and projection (7).
>, o Historical derivation (8) effectively performs selection and projection on the valid-time dimen-
: sion by replacing the time-stamp of each attribute of selected tuples with a new time-stamp.
! e Aggregation (/'1\) and unique aggregation (/4/(7) serve to compute a distribution of single values
over time for a collection of tuples
L4
: We should mention several other operators that can exist harmoniously with Jhese eight op-
. erators. Intersection (). quotien (i] natural join (%), and ©-join t;;?) can all be defined in
X terms of the five basic uperators. in an denticai fastuion to the definition of their snapshot coun-
terparts. Finally. the historical roilback operator “p). delfined eisewhere McKenzie & Snodgrass
1987 A |, serves to generaiize the algetra to handle temporal relations incorporating both valid and
y transaction time
.
.
3 Equivalence with TQuel
. Wa ot w o .) © o s e exsressooe power of the TQuel
e ' . . - . oy s van! e TQuel s a
. el . . vt ala.aér tr tne [rngres relational
e . . T alole UL sand time anc
L : : ©r e s irart vand time
Ca o . Lol arer v thie value of
N e s vaiad from
A T etants aml the
S atse s The Temporal
' . ST we DLy g TeoT i
. : . . L T Tepde wver ., .ap
- cersoaadesl Gl ongy
:- et D terernialing the
N e LU W Lot
" toes tar hamdhng
4
<
LY
.
a . . . T Lo assITIes Tupie
LT SN ! ' L e man teralions n
Al e a4 . I . s Sy the sematitios
- T ue e g e N . . S . et e e Whien the

rPEES L e

- »

ENENEY

atas

R B

LR W A

e s u &

PLIS APl Y

tuple became valid (i.e., From) and the time when the tuple became invalid (i.e., T0). Also unlike
our historical algebra, TQuel allows value-equivalent tuples in a relation but assumes that value-
equivalent tuples are coalesced (i.e., tuples with identical values for the explicit attributes neither
overlap nor are adjacent in time). As we will see shortly, it 1s possible to convert the embedded,
coalesced snapshot relations used in TQuel’s formal semantics to historical relations.

3.1 TQuel Retrieve Statement

Assume that we are given the k snapshot relations Rj, ..., R} whose schemes are respectively.

Nl :{Nl,l; ey Nl,m“ Froml, T01}
Ne={Ng 1, ..., Ni,m,, Fromg, To,}

For notational convenience, we associate “ ' ® with TQuel relations, tuple variables, and ex-
pressions to differentiate them from their counterparts in the historical algebra and assume that
Ni1, --., Nk m, are unique. Furthermore, let 1y, 12, ..., i, be integers, not necessarily distinct,

in the range 1 to k and q;, 1 <! < n, be a distinct integer in the range 1 to m;,. Then, the TQuel
retrieve statement has the following syntax

range of rj is R

range of r, is R}

retrieve into Ry, (Ney1 1 =7, Nijars -oo o Negrn = 1

inNin, a0) (1)

1
valid from v to yx

where o

when 7

This statement computes a new relation R}, over the relational scheme

')'/k-#l = {Nk-(-l.l) ey Nk+l,n7 Fromk+l) T0k+l}

Its tuple calculus statement has the following form

3 Ripy = (w™*? | (@) Grl)
‘ (rieRyA---ATLER,

Au(Negr,1) = (Niya) A Aw(Negrn) = 1 (Niy)

A u(Frompyy) = @, ((ri(Fromy), ri(To1)), ..., (ri(Fromy), ri(Tox)))

Lo A u(Tors1) = ¥ ((r1(From1), ri(Toy)), - .., (ri(Fromy), ri(Tox))) (2)
’ A Before(u(Fromyy1), u(Tor+1))
u AW (ry(N1a), - ri(Neym,)
, AT ((ry(Fromy), ri(To1)), - .., (ri(Froms), ri(Tox)))
’l
:)}
%
, where Before is the “<” predicate on integers, the ordered pair (ri(From;), ri(To;)), 1 <1 < k,
V represents the interval [r(From;), ri(To;)), and ¥/, ®,,, ®!, and I'; are the denotations described
N below of ¢, v, x, and 7 respectively.
\
‘
o) Q, is obtained by replacing each occurrence of an attribute reference r}.N; 5, 1 < v < k, 1 <
- a < m,, in ¢ with r}(N; ;) and each occurrence of a logical operator with its corresponding logical
o predicate. That is,
R
> ! !
:- r‘..N;,a — ",‘(Ni,a),
\ and — A,
._: or — Vv, and
N not — -
¢ @, ard ®) are obtained by replacing each occurrence of a tuple variable r| in v and x with
o the ordered pair (ri(From,), ri(To;)) and each occurrence of a temporal constructor with a corre-
4 sponding function. That is,
e
ri — (ri(From;), rl(To,))
begin of I — beginof(I),
0
"j end of [— endof(]),
'l
” I, overlap I; — overlep(ly, 1), and
1
I extend [— eztend(]), 1)
oy where beginof, endof, overlap, and eztend are functions on the domain [. Formal definitions for
o these functions are presented elsewhere [Snodgrass 1987|.
W
.
I is obtained by replacing each occurrence of a logical operator in r with its corresponding
Ty, logical predicate according to the rules given for its replacement in y, replacing each occurrence of
.
0
) 23

o)

|.'
bt
N a tuple variable or temporal constructor according to the rules given for their replacement in v and
‘ '3 x, and replacing each occurrence of a temporal predicate operator with an analogous predicate on
3 intervals. That is,
::. I, precede [; — precede(], I3},
&Y
:, I, overlap Iy -+ overlap(l,. I2). and
o

Iy equal /» -+ equall/y. I7)

p

y where precede. overiap. and equal are predicates on the domain | Formal definitions for these
. - i -~

v predicales are presented =isewhere Nfiodgrass 1987

Y

. 3.2 Correspondence w:th the Historical Algebra

n".

38 B . ~ .

o, To compare the ~xpresae aer 11, i anid The Nustoricai aigebra presented in Section 2, we
':,‘ Arst ceiate "eiat. ny r e a4 asieris ner -1 ressions .1 the new TQuel clauses. and finally the

retreve slatemies. & 70 e ¥.oceen,

‘v

> Definition I <o .0 - .- -« U mars 4 gwes smbedded snapshot relation over the
: scheme N - © o svtraernl asluticad ce.siton vaedid 1m our historical
2 e e

- T : . ‘

-

-

¢

PR Ky Y

g PN e R .

N

..

. e N vaiur w0,
- EXTEND - sren. SUCCir 1 Tot)) 2 valid(u(N)))
[. .
: Ihe nrst clause 1 hs ettt ensores chat each tuple in T(A') has at least one value-equivalent
- tupte in B The sec .nt «.se n the detimition ensures that each subset of value-equivalent tuples
8 in K 18 represented Bwv o4 s nge tupie .n TIR') Note also that the same time-stamp 1s assigned
- 1o each attribute ot 1 irve n T X' This time-stamp s simply the union of the time-stamps of
. the tuple’s value-equiva,ent tupies in X' Because TQuel assumes that value-equivalent tuples are
coalesced, the time-stamp »f each tuple iIn R’ 1s a distinguishable interval of time 1n the attribute
' time-stamps of 1ts value-equivaient . ounterpart in T(/'), as shown by the following lemma.
24
ARy -.},-."'-.;.:,__s.‘ e, ...'__~’__),\, " wf-...-'. Y A RN) s

PNy . e Yo \'a bndia® Ay - () (AW “hat Aot Bof $a0 Rot bt Baf B 0 g0 ot Ao oia e s SN A) ¢

- o eom

Lemma 1 Vr, r € T(R'), Va, 1 < a < m, VI, [€ INTERVAL(valid(r(N,))),
3, (r'eR
AVe, 1 £ ¢ <m, value(r(N,)) = r'(N.)
A I = EXTEND(r'(From), SUCC(r'(To)))

s
e

\)
PROOF. Apply the definitions of coalescing and INTERVAL to T and simplify. I

i Definition 2 We define a m+2-tuple TQuel relation R' and a m-tuple relation R in our historical
algebra to be equivalent if, and only if, R = T(R'). In addition, we define a TQuel query and an
K ezpression in our Ristorical algebra to be equivalent if, and only if, they evaluate to equivalent
relations.

Let ¥y, ®,, and ®, be the denotations in our algebra of ¢, v, and x respectively. ¥ is obtained
by replacing each occurrence of ri(N;,), 1<i<k,1<a<min \Il'* with N; .. ®, and P, are
obtained by replacing each occurrence of an ordered pair (ri(From;), ri(To;)), 1 < i <k, in ¥,
and Q’x with N; 1 and each occurrence of a TQuel function with its algebraic equivalent. That is,

(ri(Froms), ri(To)) — Ny,
beginof (I) — FIRST(I),
endof(I) — LAST(I),

LY
Y ovcrlap(Il, Iz) — I NI, and
! extend(I1, ;) — EXTEND(FIRST(L), LAST(L)).

Also let T'; be the denotation in our algebra of r. T, is obtained by replacing each occurrence
’ of an ordered pair (r}{(From;), r!(To;)) and each occurrence of a TQuel function in I with its
- algebraic equivalent according to the rules above and each cccurrence of the predicates precede,
1 overlay, and equal with its algebraic equivalent. That is,

precede(ly, L) — LAST(I;) < FIRST(L) v LAST(,) = FIRST(),

N overlap(l,,) — LN I; # 0, and
:' equal(ll, 12) - I = L.
Note from the definition of T(R') that a tuple in T(R') has the same time-stamp for each of its
N attributes. Hence, although we require that each occurrences of an ordered pair (r}(From,), ri(To;))
Y in @, ¥\, and T, be replaced with the same attribute name (i.e., Ni 1), we could have specified
s any attribute of relation R;.
0

We will need the following two lemmas in the equivalence proof to be presented shortly.
%
A 25
Cd
4
L4

]
B P A P P A
WA S N) .

Ly P N e Ta ™
i, Ve G SR ERE "" G TR LR

o av Vo Bg 0. Ata 4. AV 2Y LW P | Vo aty” TUNUY U o a%e @2 Al A% BV e 2% AVo ata At ala gty gty At L") “abo als ale b,)

M,
.
:- Lemma 2 ®,, ®y, and ', are semantically equivalent to ®,, ®), and '} respectively. That is,
A the result of evaluating ®,,, &), and T, for tuples r], r| € R}, 1 <1 < k, is the same as the result
i of evaluating ®,, ®,, and T'; for che intervals I;, I; = EXTEND(r}(From;), SUCC(ri(To;)))
o substituted for the attribute name N; ;.
;;‘::(
N PROOF. The semantic equivalence follows directly from the definitions of the functions used in
'I.:‘ P, ¥, and I'; [Snodgrass 1987]. §
!
» . Lemma 3 t e EXTEND(®,(...), SUCC(&,(...))) — Before(d.(...), ®\(...)-
\J PROOCF. 1t follows directly from the definition of EXTEND, given in Appendix B, that t €
y EXTEND(®,(...), SUCC(®)(...))) implies ®,(...) < t < ®(...)), which in turn implies
; Before(®,(...), ®,(..)) 1
e
;‘_ Having defined the algebraic equivalents of TQuel relations and expressions in the new TQuel
:} clauses, we can now define the algebraic equivalent of a TQuel retrieve statement. Every Quel
i retrieve statement (a target list and where clause) is equivalent to an algebraic expression that
) represents cartesian product of the relations associated with tuple variables, followed by selection
2 by the where-clause predicate, and then projection on the attributes in the target list. Similarly,
j every TQuel retrieve statement is equivalent to an algebraic expression that represents cartesian
ﬁ product of the referenced relations, followed by selection by the where-clause predicate, historical
ool derivation as specified by the when and valid clauses, and then projection on the attributes in the
- target list.
‘"‘
.: Theorem 2 Every TQuel retricve statement of the form of (1) found on page 22 is equivalent to
;‘_ an ezpression in our historical algebra of the form
< - .
K R = &N, 0\ Ni.an (1., EXTEND(¢.,5UCC(8,)) (0%, (T(R) X ... xT(R})))). (3)
,':' PROOF. To prove that R and R}, are temporally equivalent, we must show that R = T(R},,).
.. From set theory and the definition of T, it follows that R and T(R, +1) are equal if, and only if,
" the following holds.
~ (Vr, r€ R, Va,1 < a < n, Vi, t € valid(r(N,)),
O
L Irkers (Ther € By,
- AVe, 1 < < n, value(r(Ne)) = rhoy (Nievr,e)
~ At € EXTEND(r,, ,(Fromyy), SUCC(r}, ,(Tors1)))
X) (4)
v)
~
A(Vr,r€ R, VYri, (rie1 € Rypy A Ve, 1<a<n, ri (Nesr,a) = value(r(N,))),
D
! 26

NAY R YT LW U § LN LR R Gad Yl Vol 0ad ta) 0, i W) AN NP PURE i anl et SR s et o bat daro@a fat gas s v

T PN

Ve, 1< ¢ < n,

EXTEND(r},,(From.,), SUCC(r},;(Tor+1))) € valid(r(N.))

P s

s et

To prove the validity of (4), we show that the tuple calculus for R reduces to (4). First, construct
the tuple calculus statement for R from the definitions of the historical operators X, &, §, and *,
using straightforward substitution, change of variable, and simplification (i.e., the definition of
. T(R})X ... xT(R,) obtained from the X operator is substituted for references to the historical
relation in the definition of 4, etc.).

-
»

IN'.I"I' ooy Nc'n,dn (srry EXTEND(°v,SUCC(Qx))(&W¢ (T(Rll) i et iT(R'k))))

LA L S e

A

;_ 1 {r*1{ (¥Yc, 1 <c<n, Ve, te valid(r(N,)),
X 2 (Gry)-- @r)@E0) - GL),
3 (e T(R)A---Ari € T(R,)
" 4 A I, € INTERVAL(valid(r (Ny.1))) A+~
3 5 A I € INTERVAL (valid(ri(Ng, 1))
: 8 AV, 1 <1 < n, value(r(N;)) = value(ri,(Ni;, o))
7 A Wy (value(ry(N1,1)), -- ., value(re(Ni, m,)))
N 8 AL, ..., I¥)
; 5 At e EXTEND(8,(L, ..., &), SUCC(@(L, ..., 1))
A 10) (5)
8 11 A((Yr) - (Vre)(VD) -« - (Y1)
12 (rn€ T(R) A---Ar € T(RL)
" A I € INTERVAL (valid(ry(Ny. 1)) A -
> 14 A I, € INTERVAL(valid(ri(N, 1))
15 AVl 1 <1 < n, value(r (Ni,,qa,)) = value(r(Ny))
K o A By (value(ry(Ny.1)), - .., value(re(Ne.m,)))
Y 17 AT, ..., Ik)
; 18),
] 19 Ye,1 < ¢ < n,
20 EXTEND(&, (1, ..., L), SUCC(®(I1, ..., It))) C valid(r(N))
a 21)
_ 22 A (3e, 1 <c<n A valid(r(N,)) # 9)
: 27

.._..._ qf ‘J -.. " -* - n.’:'-'-._ \'.'-‘. \-.‘-'.
Ra A Aa X hN BN N

. o ae AV e e o'l
PRI M OW LA U TUW LAY LAY W UW LN > ta a'a 4% 892 81a 2%a 42 4'2'4%2 02 .42 2" ta gba ata gt ", '} 4 N M

- ey afe
¥,

-

13

«?
[

RAAS,

- e

The three main clauses in the above calculus statement correspond to the three clauses in the

o definition of %, which appears on page 8. The X operator contributes the phrase r, € T(R{)A---A
rr € T(R}) that appears in lines 3 and 12 of the calculus statement. The & operator contributes
: the predicate found on lines 7 and 16 and the § operator contributes the predicates found on lines

4-5, 8-9, 13-14, and 17-20.

We now use the definitions and lemmas presented earlier, along with set theory, to reduce the
9 tuple calculus for R to (4). The first clause in (5), along with Lemma 1, implies that

LN .
L)

Vr,r € R, V¢, 1 < ¢ < n, Vi, t € valid(r(N,)),
(3r1)--- Bri),

>

’I

4 (heRA---AF,ERL

E AV, 1 <1< n, value(r(V)) = f':‘(l\f,-ha,)

, A ‘I’V’(’Jl(Nl.l)’ RN r'k(Nk.mt)) (6)
Y, AT (EXTEND(r!,(From,), SUCC(r (Toy))), ...,

X EXTEND(r,(From,), SUCC(r\(To:))))

N

N At € EXTEND(®,(EXTEND(r}(From,), SUCC(r,(To1))), ...,

- EXTEND(r,(From;), SUCC(r}(To)))),

o

2 SUCC(®,(EXTEND(r}(From,), SUCC(r}(To1))), .-,
EXTEND(r}(Fromy), SUCC(r,(Tox)))))

(. lﬂ' [N

])

Applying Lemma 2 to (6) results in

v . -
PANE W R R

- Vr,r € R, V¢, 1 < ¢ < n, Vt, t € valid(r(N,)),
(3r1)--- (3rk),

£

N (e R A~ AT, ER,

AVl 1 <1< n, value(r(N)) = v (Niy a))

AT (r (N1, s th(Nimy) (7)
3 AT ((rh (Froma), r4(Tov)), ., (rk(Fromy), rh(Ton)))

: At € EXTEND(&, ((r4 (Fromy), r4(To)), ..., (rh(Froms), ri(Tox))),

; SUCC(®, ((ri{Fromy), ri(To1)), .., (ri(From,), ri(Toy))))
) M)

28

. [
I,
- e L™ - - - e S T o T e i R SR T S B T S S S I P P ~ -
N N i Nt L ity A GEN Y
) " - . » . . - [d A - n A - by - » v

LR

Far s

t AF R B B A O W

0 VAR R

NN

“ e L] -\- T TN

The third clause of (5) on page 27 implies that Vr, r € R, (3¢)(3t), 1 < ¢ < n, t € valid(r(N,)).
Hence, applying Lemma 3 and the tuple calculus statement for R}, in (2) on page 23 to (7) results
in

Vr,r&€ R, Ve, 1 <c < n, Vi, t € valid(r(N.)),

Irin (Thyr € Riyy
AV, 1 <1< n, value(r(M)) = ri 1 (Nesr1)
At € EXTEND(r}, (From), SUCC(r}, ,(To)))

)

Thus, the first clause of (4) is shown to hold. A similar argument can be made, starting with the
second main clause of (5), to show that the second clause of (4) holds. Since (4) holds, R and R},
are equivalent and the historical algebra expression is equivalent to the indicated TQuel retrieve
statement. §

3.3 TQuel Aggregates

TQuel aggregates [Snodgrass, et al. 1987| are a superset of the Quel aggregates. Hence, each
of Quel’s six non-unique aggregates (i.e., count, any, sum, avg, min, and max) and three unique
aggregates (i.e., countU, sumU, and avgU) has a TQuel counterpart. The TQuel version of each
of these aggregates performs the same fundamental operation as its Quel counterpart, with one
significant difference. Because an historical relation represents the changing value of its attributes
and aggregates are computed from the entire relation, aggregates in TQuel return a distribution
of values over time. Hence, while in Quel an aggregate with no by-list returns a single value, in
TQuel the same aggregate returns a sequence of values, each assigned its valid times. When there

is a by-list, an aggregate in TQuel returns a sequence of values for each value of the attributes in
the by-list.

Several aggregates are only found in TQuel: standard deviation (stdev and stdevU), average
time increment (avgti), the variability of time spacing (varts), oldest value (first), newest value
(1ast), From-To interval with the earliest From time (earliest), and From-To interval with the
latest From time (latest).

Each TQuel aggregate has a counterpart in our historical algebra. The algebraic equivalents of
TQuel aggregates are defined in terms of the historical aggregate functions A and AU, which were
defined in Section 2.3. Before defining the algebraic equivalents of TQuel aggregates in the context
of a TQuel retneve statement however, we consider the families of scalar aggregates that appear
as parameters to A and AU in the algebraic equivalents of TQuel aggregates. Each aggregate in
one of these families of scalar aggregates returns, for a partition of historical relation R at time ¢,

the same value returned by its analogous TQuel scalar aggregate for a partition of relation R' at
time t, where R = T(R').

We define here the families of scalar aggregates that appear as parameters to A and AU in the

29

P N N R N N R RN NN NN o

algebraic equivalents of the TQuel aggregates count, countU, first, and earliest. We present
these definitions to illustrate our approach for defining the families of scalar aggregates that appear
in the algebraic equivalents of TQuel aggregates. The approach can be used to define the famulies
of scalar aggregates found in tb- ~lgebraic equivalents of the other TQuel aggregates as well.
The aggregates count and countU uiustrate how conventional aggregate operators, now applied
to historical relations, can be handled. The aggregate tirst is an example of an aggregate that
evaluates to a non-temporal domain such as character but uses an attribute’s valid time in a way
different from the conventional aggregate operators. Finally, earliest illustrates an aggregate
that evaluates to an interval.

For the definitions that follow, let R be an historical relation of m-tuples over the relation
scheme N = {N1, ..., Nm} and Q be an historical relation over an arbitrary subscheme of N.

Although the scalar aggregate COUNT, introduced on page 14, is sufficient to define the alg=braic
equivalent of the TQuel aggregates count and countU for an aggregation window of length zero
(i.e., an instantaneous aggregate), it is not sufficient to define the algebraic equivalent of count
and countU for an aggregation window of any other length. Hence, we define another family of
scalar aggregates COUNTINTy,, 1 < a < m, that accommodates aggregation windows of arbitrary
length by counting intervals rather than values.

COUNTINTN, (g, t, R) =) _ [INTERVAL(valid(r,))|
réR

where N, is an attribute of both @ and R, ¢ € @, and t € T. Recall that INTERVAL, formally
defined in Appendix B, returns the set of intervals contained in its argument. Hence, COUNTINT
simply sums the number of intervals in the time-stamp of attribute N, of each tuple in R.

Next, we consider the TQuel aggregate first. This aggregate requires a family of scalar
aggregate functions FIRSTVALUEN,, 1 < a < m, where FIRSTVALUEy, produces the oldest value of
attribute N,. That is,

FIRSTVALUEN,(¢, ¢, R) e {u|R#0 - 3r,(r€ R
AYr, ' € R, FIRST(r(N,)) < FIRST(r'(N,))
A u = value(r(N,))
)
AR =9 — u = NULLVALUE(N,)
}

where NULLVALUE is an auxiliary function that returns a special null value for the domain
associated with its argument. Note that the set {u | ...} need not be a singleton set. If there are
two or more elements in the set, FIRSTVALUE returns only one element, that element being selected
arbitrarily. This procedure is the same as that used by the TQuel aggregate first to select the

30

oldest value of an attribute when there are multiple values that satisfy the selection criteria. If R
is empty, FIRSTVALUE returns a special null value for the domain associated with attribute Nj.

Finally, we define the algebraic equivalent of the TQuel aggregate earliest. Unlike other
TQuel aggregates, which produce a distribution of scalar values over time, earliest produces a
distribution of intervals over time. Defining an algebraic equivalent for this aggregate is slightly
more complicated owing to this distinction. We first introduce a family of auxiliary functions
ORDERINTYy,, 1 < a £ m, which orders chronologically all distinguishable intervals in the
time-stamp of attribute N, for tuples of historical relation R.

S 4 ORDERINTy, (R) — (Vr)(V]), (r € R A I € INTERVAL(valid(r(N,)))),
Jv, 1<v<|S|AS, =1
AVy, 1 <v< S|
(3r)(3I), (r € R A I e INTERVAL(valid(r(N,))) A Sy = I)
AYu,2 < v <|SH,
(FIRST(S,-1) < FIRST(S,)
v (FIRST(S,-1) = FIRST(S,) A LAST(S,-1) < LAST(S,)))

where S is a sequence of length |S| and S, is the v*? element of S. Evaluating ORDERINTy, (R)
results in a sequence of the intervals appearing in the time-stamp of attribute N, of tuples in R.
The intervals are ordered from earliest starting time to latest starting time. When two or more
intervals have the same starting time, they are ordered from the earliest stopping time to the latest
stopping time. The first clause states that each interval in the time-stamp of attribute N, of a
tuple in R appears in S, the second clause states that no additional intervals are present, and the
third clause provides the ordering conditions.

Now, we can define a family of scalar aggregate functions PoSITIONN,, 1 < @ < m, where
POSITION N, first identifies, for a tuple ¢ and time t, the interval in the valid component of attribute
N, in ¢ that overlaps t and then calculates the position of that interval in ORDERINT y_(R),
for an historical relation R. If no interval in the valid component of attribute Ng overlaps t or the
interval is not in ORDERINT y, (R), POSITION, returns zero.

POSITIONN,(q, t, R) =u — ((31)(3S,), (I € INTERVAL(valid(q(N,)))
A1<v< |ORDERINTy,(R)|
A S, € ORDERINT, (R)
Atel AT=S,)
Yo u=v
A ((YI)(VS,), (I € INTERVAL(valid(q(N,)))
A1 < v < |ORDERINTy, (R)

31

LRy
PROR RGN,

PN

W,

P owte

v

R A R

A S, € ORDERINTy,(R)
)y tglI v I#S,

)= u=0

Note that POSITION, unlike COUNTINT and FIRSTVALUE, requires parameters ¢ and t, as well as R.

Now assume that we are given a family of scalar aggregate functions SMALLESTN,, 1 < a < m,
where SMALLESTy, produces the smallest value of numeric attribute N;. That is,

SMALLESTN, (¢, ¢, R)=u—~ R# 0 —3r,(reR
AN, ¥ € R, value(r(N,)) < value(r'(N,))
A u = value(r(N,))
)

AR=0—u=0

The families of scalar aggregates POSITION and SMALLEST are both needed to define the algebraic
equivalent of the TQuel aggregate earliest for attribute N, of relation R'. First, POSITION is used
to assign each interval in the time-stamp of attribute N, of a tuple in T(R’') to an integer repre-
senting the interval’s relative position in the chronological ordering of intervals. Then, SMALLEST
is used to determine, from this assignment of intervals to integers, the times, if any, when each
interval was the earliest interval. If we assume an aggregation window function w(t) = 0 and an
empty set of by-clause attributes, the algebraic equivalent of the TQuel aggregate earliest for
attribute N, of relation R’ is

&Ncorh'uc, 1=Neartiest, Q(ASMALLEST, 0, N,o,.'g,'o,.. O(R‘PO"'“O’U RPO“.“U") ;(RPO‘“'.O") (8)

over the scheme Ngriiest = {Nearliest,l, Neuliut,2} where

Ryosition = TNposition #0(AposiTION, 0, M., 0(R, R)) (9)

over the scheme Npogition = { Nposition}-

EXAMPLE. If we assume an aggregation window function w(t) = 0 and an empty set of by-clause
attributes, then earliest for attribute State of relation Sg is

32

o« L T T U VP . N
~ ‘.. - '.uﬂ',’“.--{-.. A I /-, .".P ’ 0 - A e,

LI I)

Q".“.i"~“ TR TRITICOT e aka A AL AL 4 A M Y A A a'h an AW ald diat dat b RS A0 S0 A0 A0 A s Ak A 0% B) 3%,

TN eurtions 1=Naastiess, s (ASMALLEST, 0, N, ovision, 0 Rposition, Bposition) X Rposition) =
N { (@, L2, @, {1,2)),

. (2, {3}, (2, {1,2,3})),

ot (3, {4,5.6)), (3, {4,5,6})) ,

S (5, {1.8)), (5, {7,8})) }

where Rposition 18

BN, vivion 70 (APOSITION, o0, State, 0(S6, S6)) =
; { (@ 2p),
. ((2, {1,2,3})),
e (3, {4,5,6))) ,
3 {4, {5,81) ,

J

& (5, {7.81) } =
=

ﬁ"-; As illustrated in this example, the algebraic equivalent of earliest is a two-attribute historical
- relation. The valid component of the first attribute is the time when the valid component of the
b second attribute was the earliest interval. Also note that the value component of both attributes
'(':: is the position of the valid component of the second attribute in ORDERINT y_(R).

.,

CaY

I

3.3.1 TQuel Aggregates in the Target List

.r.'.

L) N . . " .

M In Section 3.2 we showed the algebraic equivalent of the TQuel retrieve statement without aggre-
'_',.F: gates. We now show the algebraic equivalent of a TQuel retrieve statement with aggregates in its
& target list. We consider changes to the algebraic expression to support one non-unique aggregate

in the target list only; similar changes would be needed for each additional aggregate in the target
: list.

'\-"
D
N Once again assume that we are given the k snapshot relations R}, ..., R} whose schemes are
X respectively,
3
2, le{NX,ly caey Nl.mn Froml, TO[}
v,
?,
..:. Nk={N),'1, cey Nk,m“ From,, Tok}
“'\’.
o . . .
where, for notational convenience, we assume that Ny, ..., Ni m, are unique. Also, let
\
~
-
.
:\? 33

RRRAA
RN 2

..........

$1, 12, ..., %n and J1, J2, ..., Jp be integers, not necessarily distinct, in the range 1 to k,

indicating the tuple variables (possibly repeated) appearing in the target list and aggregate,
respectively;

ai, 1 <1 < n, be an integer in the range 1 to my,, indicating the attribute names appearing in

the target list where (Vu)(Vv), (1 Su<nA1<v<n AuFUAi, =1,), 8 ¥ ay;

ch, 1 < h < p, be an integer in the range 1 to m;, , indicating the attribute names appearing in
the aggregate where (Vu)(Vv), (1 Su<pA 1< v<pAUuUFvAJ,=7), Cu F Cy; and

7, 72, ..., Jz be the distinct integers in j1, f2, ..., Jp where ;; = ji, indicating the z (non-
repeated) tuple variables appearing in the aggregate.

Then, the TQuel retrieve statement with the aggregate f] in the target list has the following syntax
range of rj is R}

range of r, is R}

retrieve into R}, ,(Npiy 1= r:.l.N.-hal. v s Newrn=r N an.
Nitins1 = f{(r;‘<NJ;.c1 By 71 Nigear oo ';,-NJ’,,C,

for w;

where vy,

when 1)) (10)
valid from v to x
where o
when 7

This statement computes a new relation R}, over the relational scheme

N1 = {Nk+1,1; ceey Nl:+1,m Nk+1,n+1, Fromp,,, T0k+1}

The for clause specifies an aggregation window function for the aggregate f]. w; contains one
or more keywords that determine, along with the time granularity of Ry, ..., R}, the length of
the aggregation window at each time t. The keywords each instant represent the aggregation
window function w(t) = O (i.e., an instantaneous aggregate) and the keyword ever represents
the aggregation window function w(t) = oo (i.e., a cumulative aggregate). The length of the
aggregation window specified by other keywords (e.g., each day, each week, each year) is a

function of the underlying time granularity of the database. For example, if the time granularity

34

UL PN DRI
T T T T

-

a1

LR T

R
2 s

SRl

Ot

) PR

ARANA

ARSI A AT

-
»

PAPLS L L

. } » I}, O

1

is a day, then w = each week translates to the aggregation window function w(t) = 6. Also, the
aggregation window function need not be a constant function. For example, if the time granularity
is a day, then w = each month translates to the aggregation window function w, where w(t) = 31
if t corresponds to January 31 and w(t) = 28 if ¢ corresponds to February 28. We let Q2,, be the
function denoted by w; and the time granularity of R}, ..., R;}.

Every TQuel retrieve statement of the form of (10) is equivalent to an expression in our historical
algebra of the form

R= &N, oy, Nin.ons Naggy (8T, EXTEND(2,,SUCC(2y)) A Ny, 1 00 Nyy 1 O Naggy.s

&W' AN,’:,(:,:NQGCL-I /\"-/\NJ'P‘CP:N‘,,“"_‘(T(Ri)).(U ;<T('k))}Rﬂggl))) (11)

where
Rﬂﬂgl = Aflp nuly le,cll {N)'z.cgu “eey ij,c’}(ii-NJ'l.cll ey NJ'P.C, (1‘(Rl3|.)i et i1‘(RS,))7 (12)
5Prp Nyt Nagmy, (&Wh (T(R{h);(T)ET(RS,))))
over the scheme Nygg, = {Nagg,.1, ---, Nagg,.p}, Where Vu,1 < u < p-1, Naggivu = Njpicus

and Ny, o is the attribute name associated with the aggregate value. Here we assume that f; is
the family of scalar aggregates (e.g., COUNTINT) corresponding to the family of TQuel aggregates
f1 (e.g., count). Expression (12) applies the where and when predicates to the cartesian product of
the relations associated with tuples variables appearing in the aggregate, and applies the aggregate
operator to the result. Expression (11) differs only slightly from the expression (3) on page 26 for
a retrieve statement without aggregates. The expanded selection operator provides the necessary
linkage between the attributes in the aggregate’s by-list and corresponding attributes in the base
relations. The expanded derivation operator imposes the TQuel restriction that the valid time of
tuples in the derived relation be the intersection of the valid time specified in the valid clause, the
valid times of the tuples in the base relations participating in the aggregation, and the valid time
gf the aggregate itself. Of course, if f] is a unique aggregate, then AU should be used instead of
Ain (12).

Two changes to (11) are required to handle special cases. First, if a tuple variable 7,, 1 < u < r,
does not appear outside the aggregate f] in (10), then N, 1 does not appear in the second subscript
of the § operator. Also, if 3; appears neither outside the aggregate f] in (10) nor in its by clause,
then R,4, is replaced by

Ragg, U { ((NULLVALUE(N;, 1), {t| Vr, r € Rayq,, r & valid(r(Nagg, p))})) }

The first change removes the restriction that the valid time of a tuple in the derived relation must
intersect the valid time of at least one tuple in the base relation associated with tuple variable j,.
The second change, ensures that a value (possibly a distinguished null value) for the aggreeate is
specified at each time t, t € T.

35

t
e I R

_‘J-:f | LR Ta

- e
Fa¥s e s

z
5

QTS

[S . ,l-_/ I‘I_I'V{“

ala A&

3.3.2 TQuel Aggregates in the Inner Where Clause

Aggregates may also appear in the where, when, and valid clauses of a TQuel retrieve statement.
We now show the algebraic equivalents of T'Quel retrieve statements with aggregates in these
clauses, first presenting the algebraic equivalent of a TQuel retrieve statement with an aggregate
in an inner where clause. Assume that a TQuel aggregate f; appears in ¢; in (10) and let

g1, 92, --., gy be integers, not necessarily distinct, in the range 1 to k, indicating the (possibly
repeated) tuple variables appearing in the nested aggregate where Vg,, 1 < u <y, 3j,, 1 <
v <P, Ju = Ju;

d;. 1 <1<y, be an integer in the range 1 to my,, indicating the attribute names appearing in
the nested aggregate where (Vu)(Vv), (1 Su< yAl v < yAu# vAag, =gy),dy # dy; and

g1, §2, --., §z be the distinct integers in g1, g7, ..., gy, where g = ¢;, indicating the z (non-
repeated) tuple variables in the aggregate.

Then, f; in) has the following syntax

! ! I '
f2(rg;'N91.d1 by rgz'Ngz.dzu e rg'.Nh'd’
for ws
where 3

when 72)

As this TQuel retrieve statement is complicated, containing a nested aggregate with a full com-

plement of by, for, where, and when clauses, we should expect a somewhat complicated algebraic
equivalent.

When modified to account for f; in 91, the algebraic equivalent of f{, given in (12), becomes,

Raggl = NN):.C:; reey ij.c’. Nuggl (Afl. nul. le"'l' {le'm]'l-f'l' Nj')v“)' (3T} Nj’,cp)(

N ~

AN ver Nivmgisv Nigeeas o Nipucy (T(Ry,)x{((1, T))}x---XT(RY,)),

ﬂNh‘l'-'-th-"‘y+1:Nh,l-~~--N):.m,,((13)
5rrl, Nh. Lo oo N)\.mh ' NJ[."‘“+1 n Nan:.v: Nh‘ Lo ooy ‘V)x-"‘), viVaggg.ly - ‘VMN:-I(

Wy, ANgs a3 =Naggy 1 A ANﬂy.dyzNﬂﬂﬂ’)‘!“l(

T(Ry,)X{((1, T)) }x -+ XT(R,)% Ragg,)))))

36

where the attribute name N,gy, here refers to the aggregate produced in A by f,, the reference to
the aggregate f; in ¢, is replaced by a reference to Ny, ,, and

Raggz = 2{;, Qu,y, N"'dl, {N“'d,z, e N,"‘,}(ﬁNﬂ_Jl, . N,,,J, (T(Rél);(ct ;ET(R%.)))
8Lry, Nayts s Nagomy, (F0y, (T(By,)X - XT(Ry,))))

over the scheme Nypg, = {Naggs,1, .-+, Nagga,y}> and f2 is the family of scalar aggregates corre-
sponding to the family of TQuel aggregates f;.

{((1, T))} is a constant relation containing a single tuple whose value component may be

an arbitrary value from an arbitrary domain. Here, we effectively add an additional attribute to

R, and then use the attribute as an implicit by-list attribute to restrict tuples in the partition of

- T(R,)% ---XT(RY,) at time ¢ to only those tuples that satisfy the predicate in t; involving the
aggregate f; at time t.

3.3.3 TQuel Aggregates in the Inner When Clause

Assume now that the aggregate f} appears in 7, in (11) rather than in y;. The only aggregates
that can appear in 1 are earliest and latest. Therefore, if we let R4y, be the two-attribute
algebraic equivalent of f;, then the algebraic equivalent of f{ would be the same as that given in
(13) for an aggregate in the inner where clause, with one exception. The reference to f} in ry is
replaced by a reference to Nygg,, y+1, D0t Nagg,, . The valid component of Nggy, , is the time when
the valid component of N,gg, ,+1 Was the oldest interval, hence N,gy, ,+1 is used in evaluating 7;.

If we assume that f; is earliest, then Ry, is

Raggg = &N¢792'12N4102.1+1 (ASMALLESTN'x' dy’ nug. N;ou'tion- {Ngz.d:n ey Nay.d,}(
(RpoaiﬁoniT(R'm);(ttt ;\(T(Rly,))) (14)

WNpolitionv N'Q- dgr e N""'

5[‘72 A N'lv‘l= posstion) Npou'honn Nh. 1y - Nﬂ..mh (

&W,Q(RpociﬁoniT(R,m);(e >2’1‘(’}2;.))))
X (Rpouition U{{(0, T)) }))

over the scheme Nagg, = {Nagga,1, .-, Nagga,y+1} Where

Rposition = TN, ppusion # 0(APOSITION, oo, Noy. 4 o(T(Ry,), T(Ry,))) (15)

Expression (14), while structurally equivalent to expression (8) on page 32, is considerably
more compiex because of the presence of by, when, and where clauses in the nested aggregate.

37

' AV P PP Ve JNS RPI B I Y PR I U TR N DO .« MM W W N W W W .o~ -, . P Y AT A e S mt e e e " AN"m"4a"
Kol Ny J‘J' .". ".'.' ' v .r _ . ¥ ,,.-l',‘-('"i'__.f - f_f"v‘_.‘\.(_\.\.r._,;"\i‘.‘. T

A Y Y Y ¥ o . N IIRAY L €5 a0 1.7

TR

TSRS I

YW WX

.
o

s Y9 Te T
e

S

'~

()
AL

»

PN

-"----— ~ o m NV
o Y,) ‘Q}" u‘.“r"‘-*-._-

The attributes of A’s first argument now include the attributes appearing in the by clause and the
attributes of A’s second argument include the attributes of relations associated with tuple variables
appearing in the aggregate. Also, tuples in the second argument are now required to satisfy the
where predicate and, for some interval in the time-stamp of attribute N, 4,, the when predicate.
Finally, because TQuel assumes earliest and latest return T for an empty partition of R', the
tuple ((0, 7)) is added to Ryouition S0 that T will be considered the earliest interval at those times
when the partition of A’s second argument is empty. Recall that SMALLEST, defined on page 32,
returns zero when passed an empty relation.

3.3.4 TQuel Aggregates in the Outer Where Clause

Assume that the TQuel aggregate fi appears in ¢ in (10) rather than in the target list. Then, the
algebraic equivalent of the TQuel retrieve statement is

R= %N, .\ . Nip.on(Or,, EXTEND(8,, SUCC(,)) 0 Nyt 1+ 0 Nyy 1 1 Nagy p (

OWy ANy c3=Naggr 1 A AN o =Naggy . pei (T(R})X -+ xT(R,) X Ragg,)))

where the reference to f] in ¥ is replaced by a reference to Nggq, ,. Note that the only other
change from expression (11) is the elimination of attribute N,y ., from the projection. since the
aggregate does not appear in the target list.

3.3.5 TQuel Aggregates in the Outer When Clause

Assume now that the aggregate f} appears in r in (10). Then, the algebraic equivalent of the
TQuel retrieve statement is

R=%N, ., .. Ny an(Or, EXTEND(®,.SUCC(8,)) A Ny, i 0 N Nyu 1 0 Neggyos b

&W'ANnﬂq:Nun-l"""\sz.cp:N-upr-l(T(R’l);(T)‘(T(R'k);(R“WI)))

where the reference to f] in 7 is replaced by a reference to Nggq, p+1. If the aggregate f] is in v or
X rather than r, analogous changes would be required.

3.3.6 Multiply-nested Aggregation

The approach described above for handling aggregates in the inner where and when clauses can be
used to handle aggregates in a qualifying where or when clause of an aggregate in the outer where,
when, or valid clauses. This method of converting TQuel aggregates to their algebraic equivalents,
when there is an aggregate in a qualifying clause, can also handle an arbitrary level of nesting of
aggregates.

38

R

P e T e A

3.4 Correspondence Theorems

Now that all possible locations for aggregates in a TQuel retrieve statement have been examined,
we can assert that

X Theorem 3 Every TQuel retrieve statement has an equivalent expression in our historical algebra.

' PROOF. Induct on the number of aggregates appearing in the statement to arrive at an equivalent

algebraic expression, applying the replacements discussed above in Sections 3.3.1 through 3.3.5, as
3 appropriate. Incorporate the handling of transaction time via the rollback operator () as discussed
elsewhere [McKenzie & Snodgrass 1987A]. Construct a tuple calculus expression for the retrieve
statement and the algebraic expression, then prove equivalence using the technique used in the
proof of Theorem 2. While the proof is aided by the presence of auxiliary relations in the tuple
calculus semantics for aggregates [Snodgrass 1987, it is still cumbersome and offers little additional
insight. i

~ R Y

In a similar fashion, by also using the modify _state and modify_scheme commands described
elsewhere [McKenzie & Snodgrass 1987B|, one can construct equivalent algebraic statements for
the TQuel create, delete, append, replace, and destroy statements.

Theorem 4 The historical algebra defined here 1s strictly more powerful than TQuel.

PROOF. The previous theorem shows that the expressive power of the algebra is as great as that of
| TQuel. Now, for two TQuel relations R} and R}, consider the algebraic expression T(R}) X T(R}).
i Because the semantics of TQuel requires that tuples rather than attributes be time-stamped, this

algebraic expression has no counterpart in TQuel. Hence, the algebra is strictly more powerful
than TQuel. §

4 Review of Design Decisions

PSSO

. In defining the historical algebra presented in Section 2, we were faced with three major design
) decisions: whether to time-stamp tuples or attributes, whether to allow single-valued or set-valued
time-stamps, and whether to allow single-valued or set-valued attributes. We discuss here our
choices and the importance of those choices in determining the properties of the algebra. We also
(mention the choices to these design decisions made by the developers of seven other historical
’ algebras: Ben-Zvi’s Time Relational Model |Ben-Zvi 1982}, Clifford’s proposed extension to the
g snapshot algebra [Clifford & Croker 1987, Gadia’s homogeneous and multihomogeneous historical
algebras {Gadia 1984, Gadia 1986|, Jones’ extension to the snapshot algebra to support time-
oriented operations for LEGOL [Jones et al. 1979], Tansel’s historical algebra [Tansel 1986/, and
Navathe’s historical algebra [Navathe & Ahmed 1986|. A detailed review and evaluation of historical
algebras, using desirable properties as evaluation criteria, can be found elsewhere [McKenzie &
Snodgrass 1987C]. l

Aty 5 SaRWAN GBI -."\' AT

4.1 Time-stamped Attributes

We decided to time-stamp attributes rather than tuples to support historical queries. We wanted
the algebra to allow for the derivation of information valid at a time t from information in underlying
relations valid at other times, much as the snapshot algebra allows for the derivation of information
about entities or relationships from information in underlying relations about other entities or
relationships. This requirement implies that the algebra allow units of related information, possibly
valid at disjoint times, to be combined into a single related unit of information possibly valid at some
other times. Support for such a capability required that we define a cartesian product operator
that concatenates tuples, independent of their valid times, and preserves, in the resulting tuple, the
valid-time information for each of the underlying tuples. Only by time-stamping attributes could
we define a cartesian product operator with this property and maintain closure under cartesian
product.

Tansel and Gadia also time-stamp attributes. Only Tansel’s algebra and Gadia’s multihomo-
geneous model, however, allow tuples with disjoint at.ribute time-stamps; Gadia’s homongeneous
model requires that a tuple’s attribute time-stamps be identical. Clifford assigns a time-stamp,
termed a lifespan, to each tuple in a relation and to each attribute in the relation’s scheme. The
lifespan of each attribute of a tuple is then computed as the intersection of the tuple’s lifespan
and the attribute’s lifespan, as specified in the relation’s scheme. Ben-Zvi, Jones, and Navathe ali
time-stamp tuples only.

4.2 Set-valued Time-stamps

We decided to allow set-valued attribute time-stamps for several reasons. First, we wanted the
algebra to support the user-oriented conceptual view of historical relations as 3-dimensional ob-
jects [Ariav 1986, Clifford & Tansel 1985} and each historical operator to have an interpretation,
consistent with its semantics, in accordance with this conceptual framework. That is, we wanted
the definitions of the algebraic operations to be consistent with the conceptual view that historical
operators manipulate space-filling objects. For example, the difference operator should take two
space-filling objects (i.e., historical relations) and produce a object that represents the mass (i.e.,
total historical information) present in the first object but not present in the second object. Note
that this description of operations on historical relations as “volume” operations on 3-dimensional
objects is consistent not only with the conceptual view of historical relations as space-filling ob-
Jects but also with the semantics of the individual snapshot algebraic operations as operations on
2-dimensional tables, extended to account for the additional dimension represented by valid time.
Secondly, we wanted the algebra to satisfy the following commutative, associative, and distributive
tautologies involving union, difference, and cartesian product that are defined in set theory [En-
derton 1977] as well as the non-conditional commutative laws involving selection and projection
presented by Ullman [Ullman 1982], while supporting the definition of historical intersection in
terms of historical difference.

QUR=RUQ
QXR=R%Q

1.‘(("',"'

IV

P
‘.l‘

[
e

~

YO

)

LA EY b W)

ShAN

5L Sh S

'J".‘ -J,P* -f \J ’l.’u -)\'.'-,‘I..‘w'.‘

o7, (6F,(R)) = 6r,(97,(R))
QU(RUS) = (QUR)US
Qx(RxS)=(QxR)xS
Qx (RUS) = (Q x R)U(QxS)
6r(QUR) = 6r(Q)Uér(R)
6r(@-R) = 6r(Q) - 6r(R)
7x(QU R) = #x(Q)U#x(R)
QAR =Q-(Q-R)

We specifically did not include one tautology, the distributive property of cartesian product over
difference, in this list because it is inconsistent with the conceptual view of operations on historical
relations as “volume” operations on space-filling objects [McKenzie & Snodgrass 1987C|. Finally,
we wanted there to be a unique representation for each historical relation to keep the semantics of
the algebra as simple as possible.

If we had decided to disallow set-valued attribute time-stamps, then we would had to have pre-
mitted value-equivalent tuples to model accurately real-world temporal relationships. Yet, value-
equivalent tuples, because they spread temporal relationships among attributes across tuples, would
have caused problems in defining an algebra with the above properties. If value-equivalent tuples
had been allowed (and set-valued attribute time-stamps disallowed), a unique representation for
each historical relation could not have been specified without imposing inter-tuple restrictions on
the attribute time-stamps of value-equivalent tuples. Also, historical operators, in particular the
difference operator, that would have satisfied both the conceptual view of historical operations as
“volume” operations on space-filling objects and the above tautologies, while preventing loss of
information about temporal relationships as an operator side-effect, could not have been defined.

By allowing set-valued attribute time-stamps (and disallowing value-equivalent tuples), we were
able to define an algebra that has the desired properties. Because value-equivalent tuples are
disallowed, each historical relation is guaranteed to have a unique representation. In addition, the
definitions of historical operators given in Section 2 are consistent with the conceptual view of
historical operations as “volume” operations on space-filling objects, and the algebra satisfies the
ten tautologies listed above.

The decision to allow set-valued attribute time-stamps unfortunately prevented the algebra
from having other less desirable, but nonetheless desirable, properties. If we had not allowed
set-valued attribute time-stamps, we could have retained the first-normal-form property of the
snapshot algebra. Also, we could have replaced the single complex historical derivation operator
with two simple operators, one performing historical selection and the other performing historical
projection.

Clifford and Gadia also allow set-valued time-stamps. Ben-Zvi, Jones, Navathe, and Tansel all
allow only single-valued time-stamps.

41

N NN S T T T L WL PP S L. I I T e L
A _‘- ¢ ,_.'_, AN RN ...\'. .’\.-‘__.‘,. AN S AN e

s

ANAS

- -
T.tea s a s

wl ¥R g s

o a a2 LN

4.3 Single-valued Attributes

We decided to restrict attributes to single values to retain in our algebra the commutative properties
of the selection operator found in the snapshot algebra. If we had allowed set-valued attributes,
without imposing intra-tuple restrictions on attribute time-stamps, then we would had to have
combined the functions of the selection and historical derivation operators into a single, more
powerful operator. This consolidation would have been necessary to ensure that the temporal
predicate in the current historical derivation operator was considered to be true for an assignment
of intervals to attribute names only when the predicate in the current selection operator held for
the attribute values associated with those intervals. This new operator would have satisfied the
commutative properties of the current selection operator only in restricted cases. Hence we would
have limited the usefulness of key optimization strategies in future implementations of our algebra.

Ben-Zvi, Jones, and Navathe also restrict attributes to single values. Clifford, Gadia, and
Tansel, however, allow set-valued attribute values.

5 Summary and Future Work

This paper makes two contributions. First, an historical algebra is defined as a straightforward ex-
tension of the conventional relational algebra. Secondly, the algebra is shown to have the expressive
power of the temporal query language TQuel.

The design of an historical algebra is a surprisingly difficult task. Although defining an algebra
that has a given property is easy, it is much more difficult to define an algebra that has many
desirable properties. We found that many subtle issues arise when attempting to define an algebra
that satisfies several design goals. Also, all desirable properties of historical algebras are not
compatible [McKenzie & Snodgrass 1987C]. Hence, the best that can be hoped for is not an algebra
with all possible desirable properties but an algebra with a maximal subset of the most desirable
properties.

The historical algebra defined in Section 2 has what we consider to be the most desirable prop-
erties of an historical algebra. First, the algebra is a straightforward extension of the snapshot
algebra. Each relation and algebraic expression in the snapshot algebra has an equivalent coun-
terpart in the historical algebra. Expressions in the snapshot algebra can be converted to their
historical equivalent simply by replacing each snapshot operator with its corresponding historical
operator and converting the referenced snapshot relations to historical relations by assigning all
attributes the same time-stamp. The historical operators U, —, x, &, and # all reduce to their
snapshot counterparts when all attribute time-stamps are the same. The algebra is aiso consistent
with the conceptual view of historical relations as 3-dimensional, space-filling objects and the view
of operations on historical relations as “volume” operations. In addition, the algebra supports
historical queries, has the expressive power of a non-procedural temporal query language, tncludes
aggregates, does not exhibit temporal data loss as an operator side-effect, and has a unique repre-
sentation for each historical relation. Finally, the algebra satisfies all but one of the commutative,
associative, and distributive tautologies involving union, difference, and cartesian product as well

42

ﬁ
)
i
-

as

D D e Sl Rl !

[1

as the non-conditional commutative laws involving selection and projection. No other historical
algebra to our knowledge has all these properties.

The obvious future work is an implementation of the algebra as defined in Section 2 and de-
velopment of optimization strategies. At this point, we feel that the formal definition of temporal
databases and their query languages has yielded many results (c.f., [McKenzie 1986}), while im-
plementation issues such as access methods, physical storage structures, and novel storage devices
remain largely unexplored.

6 Acknowledgements

Research by the first author was sponsored in part by the United States Air Force. Research by
the second author was sponsored in part by an IBM Faculty Development Award and in part by
the Office of Naval Research under contract NO0O014-86-K-0680. The work was also supported by
NSF grant DCR-8402339.

7 Bibliography

[Ariav 1986] Ariav, G. A Temporally Oriented Data Model. ACM Transactions on Database Sys-
tems, 11, No. 4, Dec. 1986, pp. 499-527.

[Ben-Zvi 1982] Ben-Zvi, J. The Time Relational Model. PhD. Diss. Computer Science Department,
UCLA, 1982.

(Bontempo 1983] Bontempo, C. J. Feature Analysis of Query-By-Ezample, in Relational Database
Systems. New York: Springer-Verlag, 1983. pp. 409-433.

[Clifford & Tansel 1985] Clifford, J. and A.U. Tansel. On an Algebra for Historical Relational
Databases: Two Views, in Proceedings of ACM SIGMOD International Conference on Man-
agement of Data, Ed. S. Navathe. Association for Computing Machinery. Austin. TX:
May 1985, pp. 247-265.

[Clifford & Croker 1987| Clifford, J. and A. Croker. The Historical Data Model (HRDM) and Alge-
bra Based on Lifespans, in Proceedings of the International Conference on Data Engineering,

IEEE Computer Society. Los Angeles, CA: Feb. 1987.

(Codd 1970} Codd, E.F. A Relational Model of Data for Large Shared Data Bank. Communications
of the Association of Computing Machinery, 13, No. 6, June 1970, pp. 377-387.

(Enderton 1977| Enderton, H.B. Elements of Set Theory. New York, N.Y.: Academic Press, Inc.,
1977.

(Gadia 1984| Gadia, S.K. A Homogeneous Relational Model and Query Languages for Temporal

43

St Al et At AL AMAL AR A A AN it ke sbtal et LA a a L S DL b bl GELCA L AP LU At P

! Databases. 1984. (Unpublished paper.)

[Gadia 1986| Gadia, S.K. Toward a Multthomogeneous Model for a Temporal Database, in Proceed-
ings of the International Conference on Data Engineering, IEEE Computer Society. Los
Angeles, CA: IEEE Computer Society Press, Feb. 1986, pp. 390-397.

(Held et al. 1975] Held, G.D., M. Stonebraker and E. Wong. INGRES-A Relational Data Base
Management System. Proceedings of the AFIPS 1975 National Computer Conference, 44,
May 1975, pp. 409-416.

[Jones et al. 1979] Jones, S., P. Mason and R. Stamper. LEGOL 2.0: A Relational Specification
Language for Complex Rules. Information Systems, 4, No. 4, Nov. 1979, pp. 293-305.

[Klug 1982] Klug, A. Equivalence of Relational Algebra and Relational Calculus Query Languages
Having Aggregate Functions. Journal of the Association of Computing Mackinery, 29, No.
3, July 1982, pp. 699-717.

[McKenzie 1986] McKenzie, E. Bibliography: Temporal Databases. ACM SIGMOD Record, 15, No.
4, Dec. 1986, pp. 40-52.

[McKenzie & Snodgrass 1987A] McKenzie, E. and R. Snodgrass. Eztending the Relational Algebra
to Support Transaction Time, in Proceedings of ACM SIGMOD International Conference on
Management of Data, Ed. U. Dayal and I. Traiger. Association for Computing Machinery.
San Francisco, CA: May 1987, pp. 467-478.

[McKenzie & Snodgrass 1987B] McKenzie, E. and R. Snodgrass. Scheme Evolution and the Rela-
tional Algebra. Technical Report TR87-C03. Computer Science Department, University of
North Carolina at Chapel Hill. May 1987.

| [McKenzie & Snodgrass 1987C| McKenzie, E. and R. Snodgrass. A Survey of Historical Algebras.
Technical Report TR87-020. Computer Science Department, University of North Carolina
at Chapel Hill. Sep. 1987.

[Navathe & Ahmed 1986] Navathe, S.B. and R. Ahmed. A Temporal Relational Model and a
Query Language. UF-CIS Technical Report TR-85-16. Computer and Information Sciences
Department, University of Florida. Apr. 1986.

[Overmyer & Stonebraker 1982) Overmyer, R. and M. Stonebraker. Implementation of a Time
Ezpert in a Database System. ACM SIGMOD Record, 12, No. 3, Apr. 1982, pp. 51-59.

(Snodgrass & Ahn 1985 Snodgrass, R. and 1. Ahn. A Tazonomy of Time in Databascs, in Proceed-
ings of ACM SIGMOD International Conference on Management of Data, Ed. S. Navathe
Association for Computing Machinery. Austin, TX: May 1985, pp. 236-246.

[Snodgrass & Ahn 1986 Snodgrass, R. and I. Ahn. Temporal Databases. IEEE Computer, 19, No.
9, Sep. 1986, pp. 35-42.

[Snodgrass 1987] Snodgrass, R. The Temporal Query Language TQuel. ACM Transactions on

44

.......................................

LY

L]
»
)

3 Database Systems, 12, No. 2, June 1987, pp. 247-298.
g4
N [Snodgrass, et al. 1987] Snodgrass, R., S. Gomez and E. McKenzie. Aggregates in the Temporal
Query Language TQuel. TemplS Technical Report 16. Computer Science Department,
University of North Carolina at Chapel Hill. July 1987.
2]
§ (Stonebraker et al. 1976| Stonebraker, M., E. Wong, P. Kreps and G. Held. The Design and
] Implementation of INGRES. ACM Transactions on Database Systems, 1, No. 3, Sep.
. 1976, pp. 189-222.
s [Tandem 1983] Tandem Computers, Inc. ENFORM Reference Manual. Cupertino, CA, 1983.
[Tansel, et al. 1985] Tansel, A.U., M.E. Arkun and G. Ozsoyoglu. Time-By-Ezample Query
Language for Historical Databases. Technical Report. Bernard M. Baruch College, CUNY.
1985.
&
- [Tansel 1986] Tansel, A.U. Adding Time Dimension to Relational Model and Eztending Relational
. Algebra. Information Systems, 11, No. 4 (1986), pp. 343-355.

{Ullman 1982} Ullman, J.D. Principles of Database Systems, Second Edition. Potomac, Maryland:
Computer Science Press, 1982.

» - e
S WA

-
a s s

" 45

"- \'\"s"- \,ﬁ"\ AN LRI RS \‘\ \" N T A e e e e N A T T e
‘ol o . L

-
" e

A Notational Conventions

This appendix describes the notational conventions used in this paper.

W Notation Usage
’ U Historical union operator
Y z Historical difference operator
3 X Historical cartesian product operator
. g Historical selection operator
x Historical projection operator
A 5 Historical derivation operator
E A Historical aggregation function for non-unique aggregates
: AU Historical aggregation function for unique aggregates
: a, b cd Attribute variables
y Da Arbitrary flat domain associated with attribute N,
: F Predicate in the historical selection operator
. f Scalar aggregate
G Predicate in the historical derivation operator
g,1%,7 Relation variables
. h,l Variables ranging over attributes in target list, by-list, or aggregate
I Domain of intervals
e I Interval
4 In, Interval from the time-stamp of attribute N,
: I, Shorthand for Iy,
! k Number of relations
m, m; Number of attributes in relation schemes N, N
N, Ny Relation schemes
" Ni, Nia Attribute names
: n Length of target list or by-list
! ©(I) Power set of]
K #(7) Power set of T
: P,y Number of attributes appearing in an aggregate
' Q, R, R Historical relations
‘ d
' 46 :
L o P L2 s - A G T T T N T T e

. ofe S
i e

.L.,0.~ ‘f "

. q, 7, 1 Historical tuple variables
p Q. R R TQuel relations
g, v, r TQuel tuple variables
N T Time Domain
X T Subset of T
: ¢ Element of T
' ’ u, v Temporary variables
» Va, Temporal function in the historical derivation operator
ol
valid(r(N,)) Time-stamp of attribute N, of tuple r
. valid(r,) Shorthand for valid(r(N,))
£ value(r(N,)) Value component of attribute N, of tuple r
. value(r,) Shorthand for value(r(N,))
w Aggregation window function
¥ X Set of by-list attributes in an aggregate
. z,z Number of tuple variables appearing in an aggregate
-
'
?
4
B .
.
»
v
v
y
J
| L]
:

47

A R N %A1tk fmtw RN
I SO N S NN SR iy

TS PO PR TR, PR PR IR AG PR

o,

. e '

" "‘:'!'.P-"\vl‘.—

NS
A

":- 1'.‘; N

Y N“
L

B Auxiliary Functions

We used several auxiliary functions in the definition of the historical derivation operator. We
present here formal definitions for each of those auxiliary functions.

FIRST takes a set of times from the domain #(7) and maps it into the earliest time in the set.

FIRST : ®(T)->Tul

1 T=20
FIRST(T) &
t,teT AVt teT, t<t otherwise

LAST takes a set of times from the domain #(7) and maps it into the latest time in the set.

LAST : 9(T)->Tul

1 T=290
LAST(T) &
t,teT AV t'eT, t>t otherwise

PRED is the predecessor function on the domain T. It maps a time into its immediate predecessor
in the linear ordering of all times.

PRED: T -Tudl

L t = FIRST(T)
PRED(t) £
tp,tp € TAtp <tAVH t'e TAt <t t' <tp otherwise

SUCC is the successor function on the domain T. It maps a time into its immediate successor in
the linear ordering of all times.

SUCC: T -T

SUCC(t)2ts, ts €T Ats >t AV, '€ T AL > ¢, t' >t
Let the domain I be the subset of #(T) that represents all possible non-disjoint intervals of time.

I4{1|I1e®(T)AVt te] — FIRST(I) <t < LAST(/)}

RS TR \:,‘-- ‘_:-_.:.. - L

e ’, &

AAoO0e

e - A2
§ '
TS

S g

S

h

)

e YT W s Be B

; x.-.l:;.k‘.‘u

2atstas a s

o -l' -l‘ ‘A. “ &

,l.._~5.

Softbth

-

S PEAL

-l \ﬂ

b
»

LI I

VA A, ‘;'.-',{".
R ABOR,

Note that I includes intervals of length 1. Also let £(I) be the power set of J. While I ¢ #(T),
each element of ${) is a set, each of whose elements are also elements of #(T).

EXTEND maps two times into the set of times that represents the interval between the first time
and the second time.

EXTEND 7T x7T - Ju.l

I - t) >t
EXTENDI(t,. t5) 2
1 {t t; <t <t} otherwise

INTERVAL maps a set of times into the set of intervals containing the minimum number of
non-disjoint intervals represented by the input set. Each time in the input set appears in exactly
one interval in the output set and each interval in the output set is itself represented by a set of
times.

INTERVAL partitions a set of times into its corresponding set of intervals where each
interval is itself represented by a set of times.

INTERVAL : £(T) — ©(I) U0
0 T =0

INTERVAL(T) 2 { {I|Vt,tel teT
APRED(t) € T — PRED(t) € [otherwise
A SUCC(t)e T — SUCC(t) e I}

Note that INTERVAL partitions a set of times into the minimum number of non-disjoint intervals
represented by the set; each time in T appears in exactly one interval.

49

',f'- hE --".“.4"‘--“-",;-\"_‘1\') \.n.-.‘_-\';1\‘-.\'.:'_--'_.' -;.'v W ':.\ :.'-'_\'. '.:_\'
\ W Ty

o 5

AN SO AN AT NTNS NS
Vo iy W ! y

M
-
</

T
® =
R
N T
oQ
SO

i
D

""'-'a\.r\ \.‘. __s NI 4-

AN

NN AT
iy

TN WO R P REIP RS SN NN

